Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior

Abstract

Impaired GABA-mediated neurotransmission has been implicated in many neurologic diseases, including epilepsy, intellectual disability and psychiatric disorders. We found that inhibitory neuron transplantation into the hippocampus of adult mice with confirmed epilepsy at the time of grafting markedly reduced the occurrence of electrographic seizures and restored behavioral deficits in spatial learning, hyperactivity and the aggressive response to handling. In the recipient brain, GABA progenitors migrated up to 1,500 μm from the injection site, expressed genes and proteins characteristic for interneurons, differentiated into functional inhibitory neurons and received excitatory synaptic input. In contrast with hippocampus, cell grafts into basolateral amygdala rescued the hyperactivity deficit, but did not alter seizure activity or other abnormal behaviors. Our results highlight a critical role for interneurons in epilepsy and suggest that interneuron cell transplantation is a powerful approach to halting seizures and rescuing accompanying deficits in severely epileptic mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transplanted MGE cells migrate into the adult hippocampus and express markers of inhibitory neurons.
Figure 2: Transplanted MGE cells differentiate into functional inhibitory interneurons.
Figure 3: Distribution of MGE-derived cells 60+ DAT into the adult epileptic hippocampus.
Figure 4: Distribution of MGE-derived cells 60+ DAT into the adult epileptic amygdala.
Figure 5: Inhibitory neuron transplantation reduces seizure occurrence in epileptic mice.
Figure 6: Inhibitory neuron transplantation rescues behavioral comorbidities of epilepsy.

Similar content being viewed by others

References

  1. Lothman, E.W., Bertram, E.H. III & Stringer, J.L. Functional anatomy of hippocampal seizures. Prog. Neurobiol. 37, 1–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V. Jasper's Basic Mechanisms of the Epilepsies, 4th edn. (National Center for Biotechnology, Bethesda, Maryland, 2012).

  3. Andrews-Zwilling, Y. et al. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS ONE 7, e40555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, S. et al. Autistic-like behavior in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anonymous. Epilepsy Fact Sheet. World Health Organizationhttp://www.who.int/mediacentre/factsheets/fs999/en/index.html〉 (October 2012).

  6. Paz, J.T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  PubMed  Google Scholar 

  8. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wichterle, H., Garcia-Verdugo, J.M., Herrera, D.G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J.L. & Anderson, S.A. Origins of cortical interneuron subtypes. J. Neurosci. 24, 2612–2622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butt, S.J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005).

    CAS  PubMed  Google Scholar 

  12. Alvarez-Dolado, M. et al. Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain. J. Neurosci. 26, 7380–7389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baraban, S.C. et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc. Natl. Acad. Sci. USA 106, 15472–15477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Southwell, D.G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shibley, H. & Smith, B.N. Pilocarpine-induced status epilepticus results in mossy fiber sprouting and spontaneous seizures in C57BL/6 and CD-1 mice. Epilepsy Res. 49, 109–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Goffin, K., Nissinen, J., Van Laere, K. & Pitkänen, A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp. Neurol. 205, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Bortel, A., Lévesque, M., Biagini, G., Gotman, J. & Avoli, M. Convulsive status epilepticus duration as determinant for epileptogenesis and interictal discharge generation in the rat limbic system. Neurobiol. Dis. 40, 478–489 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gröticke, I., Hoffmann, K. & Löscher, W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp. Neurol. 207, 329–349 (2007).

    Article  PubMed  Google Scholar 

  19. Löscher, W. Strategies for antiepileptogenesis: antiepileptic drugs versus novel approaches evaluated in post-status epilepticus models of temporal lobe epilepsy. in Jasper's Basic Mechanisms of the Epilepsies, 4th edn. (eds. Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V.) (National Center for Biotechnology Information, Bethesda, Maryland, 2012).

  20. Hadjantonakis, A., Gertenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Tricoire, L. et al. A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J. Neurosci. 31, 10948–10970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vignoli, T. et al. Consequences of pilocarpine-induced status epilepticus in immunodeficient mice. Brain Res. 1450, 125–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    Article  CAS  PubMed  Google Scholar 

  24. Babb, T.L., Kupfer, W.R., Pretorius, J.K., Crandall, P.H. & Levesque, M.F. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42, 351–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Palmiter, R.D., Cole, T.B., Quaife, C.J. & Findley, S.D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93, 14934–14939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hermann, B., Seidenberg, M. & Jones, J. The neurobehavioural comorbidities of epilepsy: can a natural history be developed. Lancet Neurol. 7, 151–160 (2008).

    Article  PubMed  Google Scholar 

  27. D'Hooge, R. & De Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Palop, J.J. et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease–related cognitive deficits. Proc. Natl. Acad. Sci. USA 100, 9572–9577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirsch, J.C. et al. Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy. Nat. Neurosci. 2, 499–500 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Cossart, R. et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 4, 52–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi, M. & Buckmaster, P.S. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J. Neurosci. 23, 2440–2452 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zipancic, I., Calcagnotto, M.E., Piquer-Gil, M., Mello, L.E. & Alvarez-Dolado, M. Transplant of GABAergic precursors restores hippocampal inhibitory function in a mouse model of seizure susceptibility. Cell Transplant. 19, 549–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Chagnac-Amitai, Y. & Connors, B.W. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J. Neurophysiol. 61, 747–758 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Trevelyan, A.J., Sussillo, D. & Yuste, R.M. Feedforward inhibition contributes to the control of the speed of epileptiform propagation. J. Neurosci. 27, 3383–3387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schevon, C.A. et al. Evidence of an inhibitory restraint of seizure activity in humans. Nat. Commun. 3, 1060 (2012).

    Article  PubMed  Google Scholar 

  37. Berényi, A., Belluscio, M., Mao, D. & Buzsaki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735–737 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marchenko, S. & Flanagan, L. Counting human neural stem cells. J. Vis. Exp. 7, 262 (2007).

    Google Scholar 

  39. Vucurovic, K. et al. Serotonin 3A receptor subtype as an early and protracted marker of cortical interneuron subpopulations. Cereb. Cortex 20, 2333–2347 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mortazavi, F., Ericson, M., Story, D., Hulce, V.D. & Dunbar, G.L. Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav. 7, 629–638 (2005).

    Article  PubMed  Google Scholar 

  41. Raber, J., Bongers, G., LeFevour, A., Buttini, M. & Mucke, L. Androgens protect against apilipoprotein E4-induced cognitive deficits. J. Neurosci. 22, 5204–5209 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Can, A. et al. The mouse forced swim test. J. Vis. Exp. 59, 3638 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank M. Dinday and W. Hindle-Katel for assistance with pilocarpine injections, J. Sebe for tissue dissection training, G. Hortopan for advice on the single-cell RT-PCR procedure, R. Palmiter for the ZnT3 antibody, and S. Canchola for training on behavior assays. This work was supported by funding from US National Institutes of Health grants from the National Institute of Neurological Disorders and Stroke (RO1-NS071785 to S.C.B., J.L.R. and A.A.-B., and F32-NS077747 to R.F.H.), and a grant from the California Institute of Regenerative Medicine (#TR2-01749 to A.A.-B. and S.C.B.).

Author information

Authors and Affiliations

Authors

Contributions

R.F.H. contributed to the concept, design, execution and analysis of all of the experiments, provided funding, and wrote the manuscript. K.M.G. contributed to the execution and analysis of the immunostaining and behavior experiments. J.L.R. and A.A.-B. contributed to the concept, provided funding and edited the manuscript. S.C.B. contributed to the concept and design of the experiments, analyzed the EEG data, provided funding, and wrote the manuscript.

Corresponding authors

Correspondence to Robert F Hunt or Scott C Baraban.

Ethics declarations

Competing interests

S.C.B., J.L.R. and A.A.-B. are cofounders of and have a financial interest in Neurona Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 1659 kb)

Supplementary Movie 1

Example of a spontaneous seizure (MOV 7049 kb)

Supplementary Movie 2

MGE cell transplantation into hippocampus rescues aggressive response to handling (MOV 6013 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, R., Girskis, K., Rubenstein, J. et al. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci 16, 692–697 (2013). https://doi.org/10.1038/nn.3392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing