Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation

Abstract

Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo's function in refinement of glomerular targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: meigo1 projection neuron dendrites are defective in mediolateral targeting and glomerular refinement.
Figure 2: Targeting defects of meigo1 ORN axons.
Figure 3: Meigo is an ER resident protein that belongs to a family of NSTs.
Figure 4: Meigo mediates ER homeostasis in projection neurons.
Figure 5: ephrin regulates projection neuron dendrite targeting and genetically interacts with meigo.
Figure 6: Meigo positively regulates the N-glycosylation of Ephrin that is important for its function in vivo.

Similar content being viewed by others

References

  1. Mumm, J.S. et al. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52, 609–621 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vrieseling, E. & Arber, S. Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3. Cell 127, 1439–1452 (2006).

    CAS  PubMed  Google Scholar 

  3. Jefferis, G.S. & Hummel, T. Wiring specificity in the olfactory system. Semin. Cell Dev. Biol. 17, 50–65 (2006).

    PubMed  Google Scholar 

  4. Spletter, M.L. et al. Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Dev. 2, 14 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. Komiyama, T., Johnson, W., Luo, L. & Jefferis, G. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 112, 157–167 (2003).

    CAS  PubMed  Google Scholar 

  6. Jefferis, G.S. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131, 117–130 (2004).

    CAS  PubMed  Google Scholar 

  7. Komiyama, T., Sweeney, L., Schuldiner, O., Garcia, K. & Luo, L. Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128, 399–410 (2007).

    CAS  PubMed  Google Scholar 

  8. Sweeney, L.B. et al. Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72, 734–747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, H. & Luo, L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42, 63–75 (2004).

    CAS  PubMed  Google Scholar 

  10. Hong, W. et al. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nat. Neurosci. 12, 1542–1550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, H. et al. Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nat. Neurosci. 9, 349–355 (2006).

    CAS  PubMed  Google Scholar 

  12. Hong, W., Mosca, T. & Luo, L. Teneurins instruct synaptic partner matching in an olfactory map. Nature 484, 201–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  14. Cudna, R.E. & Dickson, A.J. Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol. Bioeng. 81, 56–65 (2003).

    CAS  PubMed  Google Scholar 

  15. Schröder, M. & Kaufman, R.J. ER stress and the unfolded protein response. Mutat. Res. 569, 29–63 (2005).

    PubMed  Google Scholar 

  16. Ryoo, H.D., Domingos, P., Kang, M. & Steller, H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J. 26, 242–252 (2007).

    CAS  PubMed  Google Scholar 

  17. Souid, S., Lepesant, J. & Yanicostas, C. The xbp-1 gene is essential for development in Drosophila. Dev. Genes Evol. 217, 159–167 (2007).

    CAS  PubMed  Google Scholar 

  18. Haecker, A. et al. Wollknauel is required for embryo patterning and encodes the Drosophila ALG5 UDP-glucose:dolichyl-phosphate glucosyltransferase. Development 135, 1745–1749 (2008).

    CAS  PubMed  Google Scholar 

  19. Dejima, K. et al. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J. 23, 2215–2225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chihara, T., Luginbuhl, D. & Luo, L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat. Neurosci. 10, 828–837 (2007).

    CAS  PubMed  Google Scholar 

  21. Tanaka, N.K., Awasaki, T., Shimada, T. & Ito, K. Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004).

    CAS  PubMed  Google Scholar 

  22. Newsome, T.P., Asling, B. & Dickson, B. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  23. Kobayashi, T., Sleeman, J., Coughtrie, M. & Burchell, B. Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family. Biochem. J. 400, 281–289 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Komiyama, T., Carlson, J. & Luo, L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nat. Neurosci. 7, 819–825 (2004).

    CAS  PubMed  Google Scholar 

  25. Khanna, M.R., Stanley, B. & Thomas, G. Towards a membrane proteome in Drosophila: a method for the isolation of plasma membrane. BMC Genomics 11, 302 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Papoulas, O., Hays, T. & Sisson, J. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat. Cell Biol. 7, 612–618 (2005).

    CAS  PubMed  Google Scholar 

  27. Ishida, N. & Kawakita, M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447, 768–775 (2004).

    CAS  PubMed  Google Scholar 

  28. Goto, S. et al. UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat. Cell Biol. 3, 816–822 (2001).

    CAS  PubMed  Google Scholar 

  29. Lüders, F. et al. Slalom encodes an adenosine 3′-phosphate 5′-phosphosulfate transporter essential for development in Drosophila. EMBO J. 22, 3635–3644 (2003).

    PubMed  PubMed Central  Google Scholar 

  30. Selva, E.M. et al. Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signaling events. Nat. Cell Biol. 3, 809–815 (2001).

    CAS  PubMed  Google Scholar 

  31. Ishikawa, H.O. et al. Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila. J. Biol. Chem. 285, 4122–4129 (2010).

    CAS  PubMed  Google Scholar 

  32. Lin, Y.R., Reddy, B. & Irvine, K. Requirement for a core 1 galactosyltransferase in the Drosophila nervous system. Dev. Dyn. 237, 3703–3714 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Repnikova, E. et al. Sialyltransferase regulates nervous system function in Drosophila. J. Neurosci. 30, 6466–6476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, X. & Perrimon, N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signaling. Nature 400, 281–284 (1999).

    CAS  PubMed  Google Scholar 

  35. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A. & Tabata, T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004).

    CAS  PubMed  Google Scholar 

  36. Kamimura, K. et al. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J. Cell Biol. 174, 773–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Léonard, R. et al. The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J. Biol. Chem. 281, 4867–4875 (2006).

    PubMed  Google Scholar 

  38. Nakanishi, H. et al. Hut1 proteins identified in Saccharomyces cerevisiae and Schizosaccharomyces pombe are functional homologues involved in the protein-folding process at the endoplasmic reticulum. Yeast 18, 543–554 (2001).

    CAS  PubMed  Google Scholar 

  39. Hollien, J. & Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  40. Murray, J.I. et al. Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell 15, 2361–2374 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10, 98–102 (2004).

    CAS  PubMed  Google Scholar 

  42. Elefant, F. & Palter, K. Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol. Biol. Cell 10, 2101–2117 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    CAS  PubMed  Google Scholar 

  44. Chen, C.H. et al. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316, 597–600 (2007).

    CAS  PubMed  Google Scholar 

  45. Lehrman, M.A. Stimulation of N-linked glycosylation and lipid-linked oligosaccharide synthesis by stress responses in metazoan cells. Crit. Rev. Biochem. Mol. Biol. 41, 51–75 (2006).

    CAS  PubMed  Google Scholar 

  46. Toth, J. et al. Crystal structure of an ephrin ectodomain. Dev. Cell 1, 83–92 (2001).

    CAS  PubMed  Google Scholar 

  47. Tien, A.C. et al. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J. Cell Biol. 182, 1113–1125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reyes, F. et al. The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J. 61, 423–435 (2010).

    CAS  PubMed  Google Scholar 

  49. Cutforth, T. et al. Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. Cell 114, 311–322 (2003).

    CAS  PubMed  Google Scholar 

  50. Mosca, T.J., Hong, W., Dani, V., Favaloro, V. & Luo, L. Trans-synaptic Teneurin signaling in neuromuscular synapse organization and target choice. Nature 484, 237–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS  PubMed  Google Scholar 

  52. Wu, J.S. & Luo, L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat. Protoc. 1, 2583–2589 (2006).

    CAS  PubMed  Google Scholar 

  53. Yamamoto-Hino, M. et al. Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus. Cell Struct. Funct. 37, 55–63 (2012).

    CAS  PubMed  Google Scholar 

  54. Bossing, T. & Brand, A. Dephrin, a transmembrane ephrin with a unique structure, prevents interneuronal axons from exiting the Drosophila embryonic CNS. Development 129, 4205–4218 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.B. Thomas, Bloomington and the Kyoto Drosophila Stock Center for fly stocks, A.H. Brand (University of Cambridge) for the Ephrin antibody and fly stocks, S. Goto (Rikkyo University) for the dGLG1 (120 kDa) antibody, C. Field (Harvard University) for the Lava Lamp antibody, T. Uemura (Kyoto University) for the UAS-DNcadherin plasmid, H.D. Ryoo (New York University) and P.M. Domingos (Instituto de Tecnologia Química e Biológica) for xbp1:EGFP-related reagents and the Hsc3 antibody, C.-H. Chen for advice on constructing shRNAs, G. Thomas and M. Khanna for advice on performing OptiPrep density gradient centrifugation, and all of the members of the Miura and Luo laboratories for comments on this study. We especially thank T. Mosca for improving the manuscript and M. Okumura and T.C. for the blind test. L.L. is funded by the Howard Hughes Medical Institute. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan to M.M. and T.C., the Japan Society for the Promotion of Science to S.U.S., M.M. and T.C., the Japan Science and Technology Agency to M.M. and T.C., and the US National Institutes of Health (R01 DC005982) to L.L.

Author information

Authors and Affiliations

Authors

Contributions

S.U.S. performed most of the experiments and analyzed the data. S.H., K.C. and T.K. assisted in some experiments. T.C. supervised the project. S.U.S. and T.C. wrote the paper with feedback from L.L. and M.M.

Corresponding author

Correspondence to Takahiro Chihara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 3706 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekine, S., Haraguchi, S., Chao, K. et al. Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation. Nat Neurosci 16, 683–691 (2013). https://doi.org/10.1038/nn.3389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing