Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noradrenaline is a stress-associated metaplastic signal at GABA synapses

This article has been updated

Abstract

Exposure to a stressor sensitizes behavioral and hormonal responses to future stressors. Stress-associated release of noradrenaline enhances the capacity of central synapses to show plasticity (metaplasticity). We found noradrenaline-dependent metaplasticity at GABA synapses in the paraventricular nucleus of the hypothalamus in rat and mouse that controls the hypothalamic-pituitary-adrenal axis. In vivo stress exposure was required for these synapses to undergo activity-dependent long-term potentiation (LTPGABA). The activation of β-adrenergic receptors during stress functionally upregulated metabotropic glutamate receptor 1 (mGluR1), allowing for mGluR1-dependent LTPGABA during afferent bursts. LTPGABA was expressed postsynaptically and manifested as the emergence of new functional synapses. Our findings provide, to the best of our knowledge, the first demonstration that noradrenaline release during an in vivo challenge alters information storage capacity at GABA synapses. Because these GABA synapses become excitatory following acute stress, this metaplasticity may contribute to neuroendocrine sensitization to stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acute stress unmasks activity-dependent LTPGABA.
Figure 2: Stress-induced β-AR signaling unmasks activity-dependent LTPGABA.
Figure 3: β-AR–induced priming requires PKA activation.
Figure 4: LTPGABA requires priming of mGluR1 by β-AR activation.
Figure 5: LTPGABA is accompanied by changes relevant to an increase of synapse number.
Figure 6: LTPGABA requires postsynaptic mechanisms.
Figure 7: Increase of active synapse number during LTPGABA requires postsynaptic mechanism.

Similar content being viewed by others

Change history

  • 14 April 2013

    In the version of this article initially published online, the trace in Figure 4a was labeled DHPG. It should have been labeled MCPG. Also, text duplicating the n-value specifications from the Figure 1e legend was inserted into the Figure 1a image. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Joëls, M. & Baram, T.Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).

    Article  Google Scholar 

  2. Ulrich-Lai, Y.M. & Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  Google Scholar 

  3. Cullinan, W.E., Ziegler, D.R. & Herman, J.P. Functional role of local GABAergic influences on the HPA axis. Brain Struct. Funct. 213, 63–72 (2008).

    Article  CAS  Google Scholar 

  4. Armario, A., Vallès, A., Dal-Zotto, S., Márquez, C. & Belda, X. A single exposure to severe stressors causes long-term desensitization of the physiological response to the homotypic stressor. Stress 7, 157–172 (2004).

    Article  CAS  Google Scholar 

  5. Flak, J.N., Ostrander, M.M., Tasker, J.G. & Herman, J.P. Chronic stress-induced neurotransmitter plasticity in the PVN. J. Comp. Neurol. 517, 156–165 (2009).

    Article  CAS  Google Scholar 

  6. Verkuyl, J.M., Hemby, S.E. & Joëls, M. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur. J. Neurosci. 20, 1665–1673 (2004).

    Article  Google Scholar 

  7. Verkuyl, J.M., Karst, H. & Joëls, M. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur. J. Neurosci. 21, 113–121 (2005).

    Article  Google Scholar 

  8. Wamsteeker, J.I., Kuzmiski, J.B. & Bains, J.S. Repeated stress impairs endocannabinoid signaling in the paraventricular nucleus of the hypothalamus. J. Neurosci. 30, 11188–11196 (2010).

    Article  CAS  Google Scholar 

  9. Kuzmiski, J.B., Marty, V., Baimoukhametova, D.V. & Bains, J.S. Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nat. Neurosci. 13, 1257–1264 (2010).

    Article  CAS  Google Scholar 

  10. Miklós, I.H. & Kovács, K.J. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113, 581–592 (2002).

    Article  Google Scholar 

  11. Miklós, I.H. & Kovács, K.J. Reorganization of synaptic inputs to the hypothalamic paraventricular nucleus during chronic psychogenic stress in rats. Biol. Psychiatry 71, 301–308 (2012).

    Article  Google Scholar 

  12. Sarkar, J., Wakefield, S., MacKenzie, G., Moss, S.J. & Maguire, J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J. Neurosci. 31, 18198–18210 (2011).

    Article  CAS  Google Scholar 

  13. Hewitt, S.A., Wamsteeker, J.I., Kurz, E.U. & Bains, J.S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009).

    Article  CAS  Google Scholar 

  14. Sawchenko, P.E. & Swanson, L.W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. 257, 275–325 (1982).

    Article  CAS  Google Scholar 

  15. Pacák, K. & Palkovits, M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr. Rev. 22, 502–548 (2001).

    Article  Google Scholar 

  16. Saphier, D. & Feldman, S. Catecholaminergic projections to tuberoinfundibular neurones of the paraventricular nucleus. III. Effects of adrenoceptor agonists and antagonists. Brain Res. Bull. 26, 863–870 (1991).

    Article  CAS  Google Scholar 

  17. Seidenbecher, T., Reymann, K.G. & Balschun, D. A post-tetanic time window for the reinforcement of long-term potentiation by appetitive and aversive stimuli. Proc. Natl. Acad. Sci. USA 94, 1494–1499 (1997).

    Article  CAS  Google Scholar 

  18. Berridge, C.W. & Waterhouse, B.D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).

    Article  Google Scholar 

  19. Huang, Y.Y., Martin, K.C. & Kandel, E.R. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J. Neurosci. 20, 6317–6325 (2000).

    Article  CAS  Google Scholar 

  20. Tenorio, G. et al. 'Silent' priming of translation-dependent LTP by β-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors. Learn. Mem. 17, 627–638 (2010).

    Article  CAS  Google Scholar 

  21. Thomas, M.J., Moody, T.D., Makhinson, M. & O'Dell, T.J. Activity-dependent β-adrenergic modulation of low-frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).

    Article  CAS  Google Scholar 

  22. Savitt, J.M., Jang, S.S., Mu, W., Dawson, V.L. & Dawson, T.M. Bcl-x is required for proper development of the mouse substantia nigra. J. Neurosci. 25, 6721–6728 (2005).

    Article  CAS  Google Scholar 

  23. Abraham, W.C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008).

    Article  CAS  Google Scholar 

  24. Sugiyama, Y., Kawaguchi, S. & Hirano, T. mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. Eur. J. Neurosci. 27, 884–896 (2008).

    Article  Google Scholar 

  25. Patenaude, C., Chapman, C.A., Bertrand, S., Congar, P. & Lacaille, J.-C. GABAB receptor– and metabotropic glutamate receptor–dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J. Physiol. (Lond.) 553, 155–167 (2003).

    Article  CAS  Google Scholar 

  26. Kocsis, K., Kiss, J., Görcs, T. & Halász, B. Metabotropic glutamate receptor in vasopressin, CRF and VIP hypothalamic neurones. Neuroreport 9, 4029–4033 (1998).

    Article  CAS  Google Scholar 

  27. Mundell, S.J. et al. Activation of cyclic AMP–dependent protein kinase inhibits the desensitization and internalization of metabotropic glutamate receptors 1a and 1b. Mol. Pharmacol. 65, 1507–1516 (2004).

    Article  CAS  Google Scholar 

  28. Korn, H. & Faber, D.S. Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci. 14, 439–445 (1991).

    Article  CAS  Google Scholar 

  29. Kano, M., Kano, M., Fukunaga, K. & Konnerth, A. Ca2+-induced rebound potentiation of gamma-aminobutyric acid–mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc. Natl. Acad. Sci. USA 93, 13351–13356 (1996).

    Article  CAS  Google Scholar 

  30. Marsden, K.C., Beattie, J.B., Friedenthal, J. & Carroll, R.C. NMDA receptor activation potentiates inhibitory transmission through GABA receptor–associated protein-dependent exocytosis of GABA(A) receptors. J. Neurosci. 27, 14326–14337 (2007).

    Article  CAS  Google Scholar 

  31. Ouardouz, M. & Sastry, B.R. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J. Neurophysiol. 84, 1414–1421 (2000).

    Article  CAS  Google Scholar 

  32. Marsden, K.C., Shemesh, A., Bayer, K.U. & Carroll, R.C. Selective translocation of Ca2+/calmodulin protein kinase II alpha (CaMKIIalpha) to inhibitory synapses. Proc. Natl. Acad. Sci. USA 107, 20559–20564 (2010).

    Article  CAS  Google Scholar 

  33. Kwon, M.-S. et al. The effect of single or repeated restraint stress on several signal molecules in paraventricular nucleus, arcuate nucleus and locus coeruleus. Neuroscience 142, 1281–1292 (2006).

    Article  CAS  Google Scholar 

  34. Oliet, S.H., Malenka, R.C. & Nicoll, R.A. Bidirectional control of quantal size by synaptic activity in the hippocampus. Science 271, 1294–1297 (1996).

    Article  CAS  Google Scholar 

  35. Zhao, J.-P., Phillips, M.A. & Constantine-Paton, M. Long-term potentiation in the juvenile superior colliculus requires simultaneous activation of NMDA receptors and L-type Ca2+ channels and reflects addition of newly functional synapses. J. Neurosci. 26, 12647–12655 (2006).

    Article  CAS  Google Scholar 

  36. Chaouloff, F., Hémar, A. & Manzoni, O. Acute stress facilitates hippocampal CA1 metabotropic glutamate receptor–dependent long-term depression. J. Neurosci. 27, 7130–7135 (2007).

    Article  CAS  Google Scholar 

  37. Crosby, K.M., Inoue, W., Pittman, Q.J. & Bains, J.S. Endocannabinoids gate state-dependent plasticity of synaptic inhibition in feeding circuits. Neuron 71, 529–541 (2011).

    Article  CAS  Google Scholar 

  38. Wamsteeker Cusulin, J., Füzesi, T., Inoue, W. & Bains, J.S. Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat. Neurosci. advance online publication, doi:10.1038/nn.3374 (7 April 2013).

  39. Vithlani, M., Terunuma, M. & Moss, S.J. The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol. Rev. 91, 1009–1022 (2011).

    Article  CAS  Google Scholar 

  40. Tyagarajan, S.K. et al. Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc. Natl. Acad. Sci. USA 108, 379–384 (2011).

    Article  CAS  Google Scholar 

  41. Nicoll, R.A. & Malenka, R.C. Expression mechanisms underlying NMDA receptor–dependent long-term potentiation. Ann. NY Acad. Sci. 868, 515–525 (1999).

    Article  CAS  Google Scholar 

  42. Dobie, F.A. & Craig, A.M. Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation. J. Neurosci. 31, 10481–10493 (2011).

    Article  CAS  Google Scholar 

  43. Wierenga, C.J., Becker, N. & Bonhoeffer, T. GABAergic synapses are formed without the involvement of dendritic protrusions. Nat. Neurosci. 11, 1044–1052 (2008).

    Article  CAS  Google Scholar 

  44. Day, H.E., Campeau, S., Watson, S.J. Jr. & Akil, H. Expression of alpha(1b) adrenoceptor mRNA in corticotropin-releasing hormone-containing cells of the rat hypothalamus and its regulation by corticosterone. J. Neurosci. 19, 10098–10106 (1999).

    Article  CAS  Google Scholar 

  45. Daftary, S.S., Boudaba, C. & Tasker, J.G. Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Neuroscience 96, 743–751 (2000).

    Article  CAS  Google Scholar 

  46. Takano, T. et al. Beta-adrenergic receptors in the vasopressin-containing neurons in the paraventricular and supraoptic nucleus of the rat. Brain Res. 499, 174–178 (1989).

    Article  CAS  Google Scholar 

  47. Itoi, K. et al. Microinjection of norepinephrine into the paraventricular nucleus of the hypothalamus stimulates corticotropin-releasing factor gene expression in conscious rats. Endocrinology 135, 2177–2182 (1994).

    Article  CAS  Google Scholar 

  48. Pacák, K. et al. Effects of various stressors on in vivo norepinephrine release in the hypothalamic paraventricular nucleus and on the pituitary-adrenocortical axis. Ann. NY Acad. Sci. 771, 115–130 (1995).

    Article  Google Scholar 

  49. Strawn, J.R. & Geracioti, T.D. Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress. Anxiety 25, 260–271 (2008).

    Article  CAS  Google Scholar 

  50. Luther, J.A. et al. Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J. Neuroendocrinol. 14, 929–932 (2002).

    Article  CAS  Google Scholar 

  51. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Bains laboratory for comments and discussion regarding the manuscript and C. Sank for technical assistance. We are grateful to the Hotchkiss Brain Institute for providing optogenetics core resources. AAV vectors carrying the ChR2 gene were developed by K. Deisseroth (Stanford University) and distributed by Addgene. W.I. and T.F. are supported by a postdoctoral fellowship, and J.I.W.C. and K.K. by a PhD scholarship from the Alberta Innovates–Health Solutions (AI-HS). W.I., K.K. and J.I.W.C. also received fellowship and/or scholarship support from the Hotchkiss Brain Institute. J.S.B. and P.J.W. are AI-HS Senior Scholars. Q.J.P. is an AI-HS Scientist. This work was funded by operating grants from the Canadian Institute for Health Research (J.S.B., P.J.W. and Q.J.P.).

Author information

Authors and Affiliations

Authors

Contributions

W.I. designed and conducted the experiments, analyzed the data, and prepared and wrote the manuscript. D.V.B., T.F. and J.I.W.C. designed and conducted the experiments and analyzed the data. T.F., K.K. and P.J.W. developed AAV-ChR2 and Th-Cre mouse tools. Q.J.P. supervised the project and edited the manuscript. J.S.B. designed the experiments, prepared the manuscript and supervised the project.

Corresponding author

Correspondence to Jaideep S Bains.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 3328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, W., Baimoukhametova, D., Füzesi, T. et al. Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat Neurosci 16, 605–612 (2013). https://doi.org/10.1038/nn.3373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing