Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition–like mechanism

Abstract

During neocortical development, the neuroepithelial or neural precursor cells that commit to neuronal fate need to delaminate and start migration toward the pial surface. However, the mechanism that couples neuronal fate commitment to detachment from the neuroepithelium remains largely unknown. Here we show that Scratch1 and Scratch2, members of the Snail superfamily of transcription factors, are expressed upon neuronal fate commitment under the control of proneural genes and promote apical process detachment and radial migration in the developing mouse neocortex. Scratch-induced delamination from the apical surface was mediated by transcriptional repression of the adhesion molecule E-cadherin. These findings suggest that Scratch proteins constitute a molecular link between neuronal fate commitment and the onset of neuronal migration. On the basis of their similarity to proteins involved in the epithelial-mesenchymal transition (EMT), we propose that Scratch proteins mediate the conversion of neuroepithelial cells to migrating neurons or intermediate neuronal progenitors through an EMT-related mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scratch1 and Scratch2 are expressed in newborn neurons and intermediate neuronal progenitors.
Figure 2: Scratch1 and Scratch2 are required for detachment of cells from the ventricular surface and the onset of radial migration.
Figure 3: Scratch1 and Scratch2 promote detachment of cells from the ventricular surface and the onset of radial migration.
Figure 4: Scratch1 and Scratch2 induce the onset of neuronal migration without enhancing neurogenesis.
Figure 5: Scratch1 inhibits E-cadherin expression.
Figure 6: Downregulation of E-cadherin promotes the onset of neuronal migration.
Figure 7: E-cadherin downregulation by Scratch1 triggers the onset of neuronal migration.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  2. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Imai, F. et al. Inactivation of aPKCλ results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133, 1735–1744 (2006).

    CAS  PubMed  Google Scholar 

  4. Rasin, M.R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat. Neurosci. 10, 819–827 (2007).

    CAS  PubMed  Google Scholar 

  5. Kadowaki, M. et al. N-cadherin mediates cortical organization in the mouse brain. Dev. Biol. 304, 22–33 (2007).

    CAS  PubMed  Google Scholar 

  6. Hand, R. et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48, 45–62 (2005).

    CAS  PubMed  Google Scholar 

  7. Ge, W. et al. Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc. Natl. Acad. Sci. USA 103, 1319–1324 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Heng, J.I. et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455, 114–118 (2008).

    CAS  PubMed  Google Scholar 

  9. Pacary, E. et al. Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69, 1069–1084 (2011).

    CAS  PubMed  Google Scholar 

  10. Neumüller, R.A. & Knoblich, J.A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675–2699 (2009).

    PubMed  PubMed Central  Google Scholar 

  11. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    CAS  PubMed  Google Scholar 

  12. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    CAS  PubMed  Google Scholar 

  13. Ochiai, W. et al. Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-generated neocortical daughter cells. Mol. Cell Neurosci. 40, 225–233 (2009).

    CAS  PubMed  Google Scholar 

  14. Noctor, S.C., Martinez-Cerdeno, V. & Kriegstein, A.R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Tabata, H., Kanatani, S. & Nakajima, K. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb. Cortex 19, 2092–2105 (2009).

    PubMed  Google Scholar 

  16. Marthiens, V. & Ffrench-Constant, C. Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep. 10, 515–520 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155–166 (2002).

    CAS  PubMed  Google Scholar 

  19. Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  Google Scholar 

  20. Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84–89 (2000).

    CAS  PubMed  Google Scholar 

  21. Nakakura, E.K. et al. Mammalian Scratch: a neural-specific Snail family transcriptional repressor. Proc. Natl. Acad. Sci. USA 98, 4010–4015 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marín, F. & Nieto, M.A. The expression of Scratch genes in the developing and adult brain. Dev. Dyn. 235, 2586–2591 (2006).

    PubMed  Google Scholar 

  23. Hevner, R.F., Hodge, R.D., Daza, R.A. & Englund, C. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci. Res. 55, 223–233 (2006).

    CAS  PubMed  Google Scholar 

  24. Arnold, S.J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sessa, A., Mao, C.A., Hadjantonakis, A.K., Klein, W.H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hansen, D.V., Lui, J.H., Parker, P.R. & Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    CAS  PubMed  Google Scholar 

  27. Guillemot, F. Spatial and temporal specification of neural fates by transcription factor codes. Development 134, 3771–3780 (2007).

    CAS  PubMed  Google Scholar 

  28. Britz, O. et al. A role for proneural genes in the maturation of cortical progenitor cells. Cereb. Cortex 16 (suppl. 1): i138–i151 (2006).

    PubMed  Google Scholar 

  29. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kato, T.M., Kawaguchi, A., Kosodo, Y., Niwa, H. & Matsuzaki, F. Lunatic fringe potentiates Notch signaling in the developing brain. Mol. Cell. Neurosci. 45, 12–25 (2010).

    CAS  PubMed  Google Scholar 

  31. Sawamoto, K. et al. Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage-specific neural promoters. J. Neurosci. Res. 65, 220–227 (2001).

    CAS  PubMed  Google Scholar 

  32. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    CAS  PubMed  Google Scholar 

  33. Mizuhara, E. et al. MAGI1 recruits Dll1 to cadherin-based adherens junctions and stabilizes it on the cell surface. J. Biol. Chem. 280, 26499–26507 (2005).

    CAS  PubMed  Google Scholar 

  34. Bultje, R.S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J. et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev. Cell 18, 472–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Arnold, S.J., Hofmann, U.K., Bikoff, E.K. & Robertson, E.J. Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development 135, 501–511 (2008).

    CAS  PubMed  Google Scholar 

  37. Chae, T.H., Kim, S., Marz, K.E., Hanson, P.I. & Walsh, C.A. The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat. Genet. 36, 264–270 (2004).

    CAS  PubMed  Google Scholar 

  38. Sarkisian, M.R., Bartley, C.M. & Rakic, P. Trouble making the first move: interpreting arrested neuronal migration in the cerebral cortex. Trends Neurosci. 31, 54–61 (2008).

    CAS  PubMed  Google Scholar 

  39. Nagano, T., Morikubo, S. & Sato, M. Filamin A and FILIP (Filamin A-Interacting Protein) regulate cell polarity and motility in neocortical subventricular and intermediate zones during radial migration. J. Neurosci. 24, 9648–9657 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rousso, D.L. et al. Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 74, 314–330 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Morrison, S.J. & Spradling, A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamashita, Y.M. Cell adhesion in regulation of asymmetric stem cell division. Curr. Opin. Cell Biol. 22, 605–610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Karpowicz, P. et al. E-Cadherin regulates neural stem cell self-renewal. J. Neurosci. 29, 3885–3896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Franco, S.J., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S.R. & Muller, U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69, 482–497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jossin, Y. & Cooper, J.A. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat. Neurosci. 14, 697–703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawauchi, T. et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67, 588–602 (2010).

    CAS  PubMed  Google Scholar 

  47. Fietz, S.A. & Huttner, W.B. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011).

    CAS  PubMed  Google Scholar 

  48. Ayala, R., Shu, T. & Tsai, L.H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007).

    CAS  PubMed  Google Scholar 

  49. Bonaglia, M.C. et al. A 2.3 Mb duplication of chromosome 8q24.3 associated with severe mental retardation and epilepsy detected by standard karyotype. Eur. J. Hum. Genet. 13, 586–591 (2005).

    CAS  PubMed  Google Scholar 

  50. Rocha, J. et al. Gene dosage evidence for the regional assignment of GPT (glutamate-pyruvate transaminase; E.C. 2.6.1.2) locus to 8q24.2–8qter. Hum. Genet. 80, 299–300 (1988).

    CAS  PubMed  Google Scholar 

  51. Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).

    CAS  PubMed  Google Scholar 

  52. Itoh, Y., Masuyama, N., Nakayama, K., Nakayama, K.I. & Gotoh, Y. The cyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migration in the developing mouse neocortex. J. Biol. Chem. 282, 390–396 (2007).

    CAS  PubMed  Google Scholar 

  53. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).

    PubMed  Google Scholar 

  54. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    CAS  PubMed  Google Scholar 

  55. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    CAS  PubMed  Google Scholar 

  56. Kishi, Y., Fujii, Y., Hirabayashi, Y. & Gotoh, Y. HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat. Neurosci. 15, 1127–1133 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.A. Cooper and R.N. Eisenman for critical reading of the manuscript; C.L. Cepko (Harvard University), T. Matsuda (Kyoto University), T. Kitamura (University of Tokyo), M. Nakafuku (University of Cincinnati), A. Nagafuchi (Kumamoto University), F. Matsuzaki (RIKEN Center for Developmental Biology), H. Okano (Keio University) and A. Garcia de Herreros (Institut Hospital del Mar d'Investigacions Mèdiques) for providing reagents; T. Sunabori for technical advice; H. Kosako and K. Ishiguro for generation of antibodies to Scratch1; Y. Hirabayashi, N. Masuyama, T. Yoshimatsu and T. Kato for technical assistance; K. Tyssowski for editing the manuscript; and members of the Gotoh laboratory for helpful discussion. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Neural Diversity and Neocortical Organization” from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, by CREST of the Japan Science and Technology Agency, and in part by the Global COE program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) of MEXT.

Author information

Authors and Affiliations

Authors

Contributions

Y.I., Y.M. and T.H. carried out the experiments and analyzed the data. T.A.E. and T.T. supported the analysis. Y.I. and Y.G. designed the study and wrote the manuscript. Y.G. supervised the study.

Corresponding authors

Correspondence to Yasuhiro Itoh or Yukiko Gotoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1 and 2 (PDF 11945 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, Y., Moriyama, Y., Hasegawa, T. et al. Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition–like mechanism. Nat Neurosci 16, 416–425 (2013). https://doi.org/10.1038/nn.3336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing