Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

CRF acts in the midbrain to attenuate accumbens dopamine release to rewards but not their predictors

Abstract

Stressors affect dopamine-dependent behaviors such as motivation, although the underlying neurobiological mechanism is not well defined. We report that corticotropin-releasing factor (CRF) acts in the ventral tegmental area (VTA) to reduce the motivation to work for food rewards. CRF in the VTA regulates dopamine output in a stimulus- and pathway-specific manner, offering a mechanism by which acute stress selectively regulates information transmission via the VTA to reprioritize motivated behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of stress and CRF in the VTA on motivation to work for food rewards during progressive-ratio sessions.
Figure 2: CRF in the VTA attenuates NAcc dopamine release to rewards but not to reward-predictive cues.
Figure 3: CRF in the VTA affects NAcc dopamine release in a pathway-specific manner.

Similar content being viewed by others

References

  1. Sinha, R. Psychopharmacology (Berl.) 158, 343–359 (2001).

    Article  CAS  Google Scholar 

  2. Meyer, S.E., Chrousos, G.P. & Gold, P.W. Dev. Psychopathol. 13, 565–580 (2001).

    Article  CAS  Google Scholar 

  3. Salamone, J.D., Correa, M., Farrar, A.M., Nunes, E.J. & Pardo, M. Front. Behav. Neurosci. 3, doi:10.3389/neuro.08.013 (2009).

  4. Roitman, M.F., Stuber, G.D., Phillips, P.E., Wightman, R.M. & Carelli, R.M. J. Neurosci. 24, 1265–1271 (2004).

    Article  CAS  Google Scholar 

  5. Phillips, P.E., Stuber, G.D., Heien, M.L., Wightman, R.M. & Carelli, R.M. Nature 422, 614–618 (2003).

    Article  CAS  Google Scholar 

  6. Inglis, F.M. & Moghaddam, B. J. Neurochem. 72, 1088–1094 (1999).

    Article  CAS  Google Scholar 

  7. Tidey, J.W. & Miczek, K.A. Brain Res. 721, 140–149 (1996).

    Article  CAS  Google Scholar 

  8. Wang, B. et al. J. Neurosci. 25, 5389–5396 (2005).

    Article  CAS  Google Scholar 

  9. Beckstead, M.J. et al. Neuropsychopharmacology 34, 1926–1935 (2009).

    Article  CAS  Google Scholar 

  10. Ungless, M.A. et al. Neuron 39, 401–407 (2003).

    Article  CAS  Google Scholar 

  11. Wanat, M.J., Hopf, F.W., Stuber, G.D., Phillips, P.E. & Bonci, A. J. Physiol. (Lond.) 586, 2157–2170 (2008).

    Article  CAS  Google Scholar 

  12. Wanat, M.J., Kuhnen, C.M. & Phillips, P.E. J. Neurosci. 30, 12020–12027 (2010).

    Article  CAS  Google Scholar 

  13. Georges, F. & Aston-Jones, G. J. Neurosci. 22, 5173–5187 (2002).

    Article  CAS  Google Scholar 

  14. Scarnati, E., Campana, E. & Pacitti, C. Brain Res. 304, 351–361 (1984).

    Article  CAS  Google Scholar 

  15. Zweifel, L.S. et al. Proc. Natl. Acad. Sci. USA 106, 7281–7288 (2009).

    Article  CAS  Google Scholar 

  16. Zacharko, R.M. & Anisman, H. Neurosci. Biobehav. Rev. 15, 391–405 (1991).

    Article  CAS  Google Scholar 

  17. Shafiei, N., Gray, M., Viau, V. & Floresco, S.B. Neuropsychopharmacology 37, 2194–2209 (2012).

    Article  CAS  Google Scholar 

  18. Cabib, S. & Puglisi-Allegra, S. Psychopharmacology (Berl.) 128, 331–342 (1996).

    Article  CAS  Google Scholar 

  19. Lemos, J.C. et al. Nature 490, 402–406 (2012).

    Article  CAS  Google Scholar 

  20. Blacktop, J.M. et al. J. Neurosci. 31, 11396–11403 (2011).

    Article  CAS  Google Scholar 

  21. Kalivas, P.W., Duffy, P. & Latimer, L.G. J. Pharmacol. Exp. Ther. 242, 757–763 (1987).

    CAS  PubMed  Google Scholar 

  22. Clark, J.J. et al. Nat. Methods 7, 126–129 (2010).

    Article  CAS  Google Scholar 

  23. Heien, M.L. et al. Proc. Natl. Acad. Sci. USA 102, 10023–10028 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Ng-Evans for invaluable technical support and C. Akers for technical assistance. We thank N. Hollon, J. Clark and S. Sandberg for scientific discussion. This work was funded by the US National Institutes of Health (R01-MH079292, P.E.M.P.; R01-DA016782, A.B. and P.E.M.P.; T32-AA009455 and F32-DA026273, M.J.W.) and NARSAD (P.E.M.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.J.W., A.B. and P.E.M.P. designed the experiments. M.J.W. collected and analyzed the data. M.J.W. and P.E.M.P. wrote the manuscript.

Corresponding author

Correspondence to Paul E M Phillips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 (PDF 12066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanat, M., Bonci, A. & Phillips, P. CRF acts in the midbrain to attenuate accumbens dopamine release to rewards but not their predictors. Nat Neurosci 16, 383–385 (2013). https://doi.org/10.1038/nn.3335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing