Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic control of female puberty

Abstract

The timing of puberty is controlled by many genes. The elements coordinating this process have not, however, been identified. Here we show that an epigenetic mechanism of transcriptional repression times the initiation of female puberty in rats. We identify silencers of the Polycomb group (PcG) as principal contributors to this mechanism and show that PcG proteins repress Kiss1, a puberty-activating gene. Hypothalamic expression of two key PcG genes, Eed and Cbx7, decreased and methylation of their promoters increased before puberty. Inhibiting DNA methylation blocked both events and resulted in pubertal failure. The pubertal increase in Kiss1 expression was accompanied by EED loss from the Kiss1 promoter and enrichment of histone H3 modifications associated with gene activation. Preventing the eviction of EED from the Kiss1 promoter disrupted pulsatile gonadotropin-releasing hormone release, delayed puberty and compromised fecundity. Our results identify epigenetic silencing as a mechanism underlying the neuroendocrine control of female puberty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo inhibition of DNA methylation results in pubertal failure.
Figure 2: In vivo inhibition of DNA methylation prevents puberty by disrupting developmental events upstream from the GnRH-pituitary-ovarian axis.
Figure 3: The initiation of puberty is accompanied by increased promoter methylation and decreased expression of two PcG genes required for PcG-mediated gene silencing in the MBH.
Figure 4: The Cbx7 and Eed genes are expressed in kisspeptin neurons of the ARC.
Figure 5: Increased Kiss1 expression in the MBH at the initiation of puberty is accompanied by eviction of EED from the Kiss1 promoter and changes in associated repressive and activating histone modifications, without changes in DNA methylation.
Figure 6: EED delivered to the ARC of immature female rats is recruited to the Kiss1 promoter and represses kisspeptin expression.
Figure 7: EED delivered to the ARC of immature female rats inhibits GnRH pulse frequency without changing pulse amplitude.
Figure 8: EED delivered to the ARC of immature female rats delays puberty, disrupts estrous cycle and impairs fertility.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

References

  1. Plant, T.M. & Witchel, S.F. Puberty in nonhuman primates and humans. in The Physiology of Reproduction 3rd edn. (ed. Neill, J.D.) 2177–2230 (Academic/Elsevier, San Diego, 2006).

  2. Ojeda, S.R. & Skinner, M.K. Puberty in the rat. in The Physiology of Reproduction 3rd edn. (ed. Neill, J.D.) 2061–2126 (Academic/Elsevier, San Diego, 2006).

  3. Kordon, C., Drouva, S.V., Martínez de la Escalera, G. & Weiner, R.I. Role of classic and peptide neuromediators in the neuroendocrine regulation of luteinizing hormone and prolactin. in The Physiology of Reproduction 2nd edn., Vol. 1 (eds. Knobil, E. & Neill, J.D.) 1621–1681 (Raven, New York, 1994).

  4. Ojeda, S.R., Lomniczi, A. & Sandau, U. Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur. J. Neurosci. 32, 2003–2010 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Messager, S. et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl. Acad. Sci. USA 102, 1761–1766 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suter, K.J. Control of firing by small (S)-α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid-like inputs in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Neuroscience 128, 443–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Iremonger, K.J., Constantin, S., Liu, X. & Herbison, A.E. Glutamate regulation of GnRH neuron excitability. Brain Res. 1364, 35–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Christian, C.A., Pielecka-Fortuna, J. & Moenter, S.M. Estradiol suppresses glutamatergic transmission to gonadotropin-releasing hormone neurons in a model of negative feedback in mice. Biol. Reprod. 80, 1128–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herbison, A.E. & Moenter, S.M. Depolarising and hyperpolarising actions of GABAA receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J. Neuroendocrinol. 23, 557–569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ojeda, S.R. et al. Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147, 1166–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Krewson, T.D. et al. Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains. Endocrinology 145, 4447–4451 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Seminara, S.B. & Crowley, W.F. Jr. Perspective: the importance of genetic defects in humans in elucidating the complexities of the hypothalamic-pituitary-gonadal axis. Endocrinology 142, 2173–2177 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ojeda, S.R. et al. The transcriptional control of female puberty. Brain Res. 1364, 164–174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bedecarrats, G.Y. & Kaiser, U.B. Mutations in the human gonadotropin-releasing hormone receptor: insights into receptor biology and function. Semin. Reprod. Med. 25, 368–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Seminara, S.B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 100, 10972–10976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lapatto, R. et al. Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148, 4927–4936 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Topaloglu, A.K. et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet. 41, 354–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Elks, C.E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simon, J.A. & Kingston, R.E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Han, S.K. et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herman, J.G. & Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ghoshal, K. & Bai, S. DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc.) 43, 395–422 (2007).

    Article  CAS  Google Scholar 

  24. Oakley, A.E., Clifton, D.K. & Steiner, R.A. Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herde, M.K., Geist, K., Campbell, R.E. & Herbison, A.E. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 152, 3832–3841 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Broadwell, R.D. & Brightman, M.W. Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J. Comp. Neurol. 166, 257–283 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Nowak, K.W., Neri, G., Nussdorfer, G.G. & Malendowicz, L.K. Effects of sex hormones on the steroidogenic activity of dispersed adrenocortical cells of the rat adrenal cortex. Life Sci. 57, 833–837 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Gil, J., Bernard, D., Martinez, D. & Beach, D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. 6, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Otte, A.P. & Kwaks, T.H. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr. Opin. Genet. Dev. 13, 448–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Shrivastava, A. & Calame, K. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res. 22, 5151–5155 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woo, C.J., Kharchenko, P.V., Daheron, L., Park, P.J. & Kingston, R.E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wakabayashi, Y. et al. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J. Neurosci. 30, 3124–3132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lehman, M.N., Coolen, L.M. & Goodman, R.L. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gottsch, M.L. et al. Molecular properties of Kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 152, 4298–4309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Meng, S. et al. Identification and characterization of Bmi-1-responding element within the human p16 promoter. J. Biol. Chem. 285, 33219–33229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Greer, E.L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sawarkar, R. & Paro, R. Interpretation of developmental signaling at chromatin: the Polycomb perspective. Dev. Cell 19, 651–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Bilger, M., Heger, S., Brann, D.W., Paredes, A. & Ojeda, S.R. A conditional, tetracycline-regulated increase in gamma amino butyric acid production near LHRH nerve terminals disrupts estrous cyclicity in the rat. Endocrinology 142, 2102–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Schaefer, M., Hagemann, S., Hanna, K. & Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 69, 8127–8132 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Komashko, V.M. & Farnham, P.J. 5-Azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 5, 229–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kurian, J.R., Keen, K.L. & Terasawa, E. Epigenetic changes coincide with in vitro primate GnRH neuronal maturation. Endocrinology 151, 5359–5368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Young, M.D. et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res. 39, 7415–7427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernstein, B.E., Meissner, A. & Lander, E.S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Heger, S. et al. Overexpression of glutamic acid decarboxylase-67 (GAD-67) in GnRH neurons disrupts migratory fate and female reproductive function in mice. Endocrinology 144, 2566–2579 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Mueller, J.K. et al. Transcriptional regulation of the human KiSS1 gene. Mol. Cell Endocrinol. 342, 8–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, C., Bosch, M.A., Rick, E.A., Kelly, M.J. & Ronnekleiv, O.K. 17Beta-estradiol regulation of T-type calcium channels in gonadotropin-releasing hormone neurons. J. Neurosci. 29, 10552–10562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, B.J. et al. TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol. Cell Neurosci. 17, 107–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Jung, H., Shannon, E.M., Fritschy, J.-M. & Ojeda, S.R. Several GABAA receptor subunits are expressed in LHRH neurons of juvenile female rats. Brain Res. 780, 218–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Dissen, G.A. et al. Using lentiviral vectors as delivery vehicles for gene therapy. in Controlled Genetic Manipulations (ed. Morozov, A.) 69–96 (Springer Science + Business Media, 2012).

  57. Rage, F. et al. Targeting transforming growth factor a expression to discrete loci of the neuroendocrine brain induces female sexual precocity. Proc. Natl. Acad. Sci. USA 94, 2735–2740 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.E. Costa for technical assistance with the in situ hybridization procedures and the preparation of ovaries for morphological observation. This work was supported by US National Institute of Health (NIH; HD025123-ARRA and 8P51OD011092) and US National Science Foundation (IOS1121691) grants to S.R.O. and by NIH grants NS43330 and DK68098 to O.K.R., and by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (FP7-PEOPLE-2010-IOF) to J.M.C.

Author information

Authors and Affiliations

Authors

Contributions

A. Lomniczi and S.R.O. designed the project and wrote the paper. A. Lomniczi was involved in all aspects of the study. S.R.O. coordinated the project and performed the intrahypothalamic injections of viruses, including the imaging studies. A. Loche and J.M.C. ran global methylation arrays, ChIP and targeted methylation assays. O.K.R. and M.B. performed the single cell PCR experiments. G.K. measured mRNA by qPCR. J.G.K. determined the number of kisspeptin neurons in the ARC. H.W. designed the Perl script for the detection of HOTAIR consensus motifs and analyzed the data from DNA methylation arrays. G.P.P. advised us on methylation assays.

Corresponding authors

Correspondence to Alejandro Lomniczi or Sergio R Ojeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 (PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomniczi, A., Loche, A., Castellano, J. et al. Epigenetic control of female puberty. Nat Neurosci 16, 281–289 (2013). https://doi.org/10.1038/nn.3319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing