Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The organization of two new cortical interneuronal circuits

A Corrigendum to this article was published on 22 November 2013

This article has been updated

Abstract

Deciphering the interneuronal circuitry is central to understanding brain functions, yet it remains a challenging task in neurobiology. Using simultaneous quadruple-octuple in vitro and dual in vivo whole-cell recordings, we found two previously unknown interneuronal circuits that link cortical layer 1–3 (L1–3) interneurons and L5 pyramidal neurons in the rat neocortex. L1 single-bouquet cells (SBCs) preferentially formed unidirectional inhibitory connections on L2/3 interneurons that inhibited the entire dendritic-somato-axonal axis of 1% of L5 pyramidal neurons located in the same column. In contrast, L1 elongated neurogliaform cells (ENGCs) frequently formed mutual inhibitory and electric connections with L2/3 interneurons, and these L1-3 interneurons inhibited the distal apical dendrite of >60% of L5 pyramidal neurons across multiple columns. Functionally, SBC→L2/3 interneuron→L5 pyramidal neuronal circuits disinhibited and ENGC↔L2/3 interneuron→L5 pyramidal neuronal circuits inhibited the initiation of dendritic complex spikes in L5 pyramidal neurons. As dendritic complex spikes can serve coincidence detection, these cortical interneuronal circuits may be essential for salience selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L1 interneurons SBCs and ENGCs differ in preferential spiking patterns.
Figure 2: L1–3 interneurons form two distinct inhibitory circuits.
Figure 3: SBCs form inhibitory circuits in single columns.
Figure 4: ENGCs form inhibitory circuits across multiple columns.
Figure 5: L2/3 interneurons exhibit distinctive axonal arborization patterns.
Figure 6: L2/3 interneurons target different compartments of L5 pyramidal neurons.
Figure 7: SBC→ and ENGC↔L2/3I→L5 pyramidal neuronal circuits serve different functions.
Figure 8: SBC→ and ENGC↔L2/3I→L5 pyramidal neuronal circuits differ in function in vivo.

Similar content being viewed by others

Change history

  • 03 March 2013

    In the version of this article initially published, in Figure 8a under L1 Spontaneous, the last 400 ms of trace 4 was a duplicate of trace 3; for Figure 8c, the legend referred to a scale bar of 2 mV instead of 4 mV; in Figure 8e, incidence on the y axis was plotted in units of 0–0.8 Hz instead of 0–4%; and in Figure 7b the insets were not described. The insets show the sequences of soma/axon-dendrite-soma/axon-initiated events in the dendritic complex spikes at a timescale expanded by a factor of 2.5, with arrows indicating the timing of initiation of the dendritic slow potentials and second somatic action potentials. The errors have been corrected in the HTML and PDF versions of the article.

  • 03 March 2013

    In the version of this supplementary file originally posted online, in Supplementary Figure 7a under SBC, the last 400 ms of trace 3 was a duplicate of trace 2; also, the corresponding legend referred to main-text Figure 7a,b instead of to Figure 8a,b. The errors have been corrected in this file as of 3 March 2013.

References

  1. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Burkhalter, A. Many specialists for suppressing cortical excitation. Front. Neurosci. 2, 155–167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, S.P. & Hestrin, S. Cell-type identity: a key to unlocking the function of neocortical circuits. Curr. Opin. Neurobiol. 19, 415–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, G.K., Tao, H.W. & Zhang, L.I. From elementary synaptic circuits to information processing in primary auditory cortex. Neurosci. Biobehav. Rev. 35, 2094–2104 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cauller, L.J., Clancy, B. & Connors, B.W. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 390, 297–310 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Gonchar, Y. & Burkhalter, A. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J. Neurosci. 23, 10904–10912 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubio-Garrido, P., Perez-de-Manzo, F., Porrero, C., Galazo, M.J. & Clasca, F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb. Cortex 19, 2380–2395 (2009).

    Article  PubMed  Google Scholar 

  13. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson, D.L. & Petersen, S.E. The pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Gilbert, C.D. & Sigman, M. Brain states: top-down influences in sensory processing. Neuron 54, 677–696 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Baluch, F. & Itti, L. Mechanisms of top-down attention. Trends Neurosci. 34, 210–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Purushothaman, G., Marion, R., Li, K. & Casagrande, V.A. Gating and control of primary visual cortex by pulvinar. Nat. Neurosci. 15, 905–912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu, Z., Galarreta, M. & Hestrin, S. Synaptic interactions of late-spiking neocortical neurons in layer 1. J. Neurosci. 23, 96–102 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu, Y. & Zhu, J.J. Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J. Neurosci. 24, 1272–1279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wozny, C. & Williams, S.R. Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb. Cortex 21, 1818–1826 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kubota, Y. et al. Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb. Cortex 21, 1803–1817 (2011).

    Article  PubMed  Google Scholar 

  22. Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 22, 6991–7005 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cauller, L.J. & Kulics, A.T. The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp. Brain Res. 84, 607–619 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Letzkus, J.J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lisman, J.E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Sjöström, P.J., Rancz, E.A., Roth, A. & Hausser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Gentet, L.J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Palmer, L.M. et al. The cellular basis of GABAB-mediated interhemispheric inhibition. Science 335, 989–993 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).

    Article  CAS  Google Scholar 

  31. Tamás, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902–1905 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Reyes, A. Influence of dendritic conductances on the input-output properties of neurons. Annu. Rev. Neurosci. 24, 653–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Nevian, T., Larkum, M.E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10, 206–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Larkum, M.E. & Nevian, T. Synaptic clustering by dendritic signaling mechanisms. Curr. Opin. Neurobiol. 18, 321–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Antic, S.D. Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond.) 550, 35–50 (2003).

    Article  CAS  Google Scholar 

  36. Tamás, G., Buhl, E.H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat. Neurosci. 3, 366–371 (2000).

    Article  PubMed  Google Scholar 

  37. Kopell, N. & Ermentrout, B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. USA 101, 15482–15487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, Y., Stornetta, R.L. & Zhu, J.J. Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. J. Neurosci. 24, 5101–5108 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, J.S., Lampl, I., Gillespie, D.C. & Ferster, D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Petersen, C.C., Hahn, T.T., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. USA 100, 13638–13643 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Y.J. et al. Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature 465, 927–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Larkum, M.E., Zhu, J.J. & Sakmann, B. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. (Lond.) 533, 447–466 (2001).

    Article  CAS  Google Scholar 

  44. Glickfeld, L.L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat. Neurosci. 9, 807–815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Földy, C., Lee, S.Y., Szabadics, J., Neu, A. & Soltesz, I. Cell type–specific gating of perisomatic inhibition by cholecystokinin. Nat. Neurosci. 10, 1128–1130 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Tricoire, L. et al. Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. J. Neurosci. 30, 2165–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z.J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Batista-Brito, R. & Fishell, G. The developmental integration of cortical interneurons into a functional network. Curr. Top. Dev. Biol. 87, 81–118 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pérez-Garci, E., Gassmann, M., Bettler, B. & Larkum, M.E. The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50, 603–616 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Huang, Z.J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat. Rev. Neurosci. 8, 673–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, J.J. Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. (Lond.) 526, 571–587 (2000).

    Article  CAS  Google Scholar 

  53. Kielland, A. et al. Activity patterns govern synapse-specific AMPA-R trafficking between deliverable and synaptic pools. Neuron 62, 84–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shepherd, G.M., Stepanyants, A., Bureau, I., Chklovskii, D. & Svoboda, K. Geometric and functional organization of cortical circuits. Nat. Neurosci. 8, 782–790 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Peters, A., Palay, S.L. & Webster, H.d. The Fine Structure of the Nervous System: Neurons and their Supporting Cells, 3rd edn. (Oxford University Press, 1991).

  56. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Agmon, A. & Connors, B.W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Ito, M. Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer 5b vibrissa neurones in the rat. J. Physiol. (Lond.) 454, 247–265 (1992).

    Article  CAS  Google Scholar 

  59. Tamás, G., Szabadics, J. & Somogyi, P. Cell type– and subcellular position–dependent summation of unitary postsynaptic potentials in neocortical neurons. J. Neurosci. 22, 740–747 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Szabadics, J., Tamas, G. & Soltesz, I. Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast . Proc. Natl. Acad. Sci. USA 104, 14831–14836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Callaway, A. Erisir, J. Huang, J. Kapur and G. Tamas for technical advice and invaluable discussions, and members of the Zhu laboratory for comments and technical assistance. This study was supported in part by a postdoctoral fellowship from the Epilepsy Foundation (X.J.), a small research grant from the College of Arts and Sciences of the University of Virginia (A.J.L.) and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

X.J., G.W. and J.J.Z. designed and developed the mechanics (X.J. and J.J.Z.), electronics and software programs (G.W. and J.J.Z.) for the stable octuple whole-cell recording technology. X.J., G.W., R.L.S. and J.J.Z. developed the immunostaining, neuronal morphology and/or ultrastructural analysis procedures. X.J., G.W., A.J.L. and J.J.Z. performed the experiments and data analysis. X.J., G.W., A.J.L., R.L.S. and J.J.Z. wrote the manuscript.

Corresponding author

Correspondence to J Julius Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–4 (PDF 1981 kb)

Supplementary Movie 1

3D reconstruction reveals distinguished axonal anatomy of SBCs and ENGCs. (AVI 5394 kb)

Supplementary Movie 2

3D reconstruction reveals distinguished axonal anatomy of L2/3 interneurons. (AVI 20012 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Wang, G., Lee, A. et al. The organization of two new cortical interneuronal circuits. Nat Neurosci 16, 210–218 (2013). https://doi.org/10.1038/nn.3305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing