Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal reference frames for social decisions in primate frontal cortex

Abstract

Social decisions are crucial for the success of individuals and the groups that they comprise. Group members respond vicariously to benefits obtained by others, and impairments in this capacity contribute to neuropsychiatric disorders such as autism and sociopathy. We examined the manner in which neurons in three frontal cortical areas encoded the outcomes of social decisions as monkeys performed a reward-allocation task. Neurons in the orbitofrontal cortex (OFC) predominantly encoded rewards that were delivered to oneself. Neurons in the anterior cingulate gyrus (ACCg) encoded reward allocations to the other monkey, to oneself or to both. Neurons in the anterior cingulate sulcus (ACCs) signaled reward allocations to the other monkey or to no one. In this network of received (OFC) and foregone (ACCs) reward signaling, ACCg emerged as an important nexus for the computation of shared experience and social reward. Individual and species-specific variations in social decision-making might result from the relative activation and influence of these areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reward-allocation task.
Figure 2: Behavior in the reward-allocation task.
Figure 3: Single neurons and population responses from ACCg.
Figure 4: Single neurons and population responses from ACCs and OFC.
Figure 5: Population biases for self, other and neither rewards.
Figure 6: Anatomical projections of recorded locations of all ACCg, ACCs and OFC cells.
Figure 7: Prosocial behavior and the fidelity of neuronal responses on other:neither trials.

Similar content being viewed by others

References

  1. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003).

    Article  CAS  Google Scholar 

  2. Gallese, V., Keysers, C. & Rizzolatti, G. A unifying view of the basis of social cognition. Trends Cogn. Sci. 8, 396–403 (2004).

    Article  Google Scholar 

  3. Berger, S.M. Conditioning through vicarious instigation. Psychol. Rev. 69, 450–466 (1962).

    Article  Google Scholar 

  4. Rilling, J. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002).

    Article  CAS  Google Scholar 

  5. de Quervain, D.J. et al. The neural basis of altruistic punishment. Science 305, 1254–1258 (2004).

    Article  CAS  Google Scholar 

  6. Baron-Cohen, S., Leslie, A.M. & Frith, U. Does the autistic child have a “theory of mind”? Cognition 21, 37–46 (1985).

    Article  CAS  Google Scholar 

  7. Adolphs, R. Cognitive neuroscience of human social behavior. Nat. Rev. Neurosci. 4, 165–178 (2003).

    Article  CAS  Google Scholar 

  8. Behrens, T.E., Hunt, L.T. & Rushworth, M.F. The computation of social behavior. Science 324, 1160–1164 (2009).

    Article  CAS  Google Scholar 

  9. Rudebeck, P.H., Buckley, M.J., Walton, M.E. & Rushworth, M.F. A role for the macaque anterior cingulate gyrus in social valuation. Science 313, 1310–1312 (2006).

    Article  CAS  Google Scholar 

  10. Kennerley, S.W., Walton, M.E., Behrens, T.E., Buckley, M.J. & Rushworth, M.F. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    Article  CAS  Google Scholar 

  11. Hayden, B.Y., Pearson, J.M. & Platt, M.L. Fictive reward signals in the anterior cingulate cortex. Science 324, 948–950 (2009).

    Article  CAS  Google Scholar 

  12. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  CAS  Google Scholar 

  13. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  14. Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).

    Article  CAS  Google Scholar 

  15. Kennerley, S.W., Behrens, T.E. & Wallis, J.D. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 14, 1581–1589 (2011).

    Article  CAS  Google Scholar 

  16. Abe, H. & Lee, D. Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex. Neuron 70, 731–741 (2011).

    Article  CAS  Google Scholar 

  17. Tsujimoto, S., Genovesio, A. & Wise, S.P. Monkey orbitofrontal cortex encodes response choices near feedback time. J. Neurosci. 29, 2569–2574 (2009).

    Article  CAS  Google Scholar 

  18. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  Google Scholar 

  19. Sato, M. & Hikosaka, O. Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J. Neurosci. 22, 2363–2373 (2002).

    Article  CAS  Google Scholar 

  20. Shidara, M., Aigner, T.G. & Richmond, B.J. Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J. Neurosci. 18, 2613–2625 (1998).

    Article  CAS  Google Scholar 

  21. Santos, G.S., Nagasaka, Y., Fujii, N. & Nakahara, H. Encoding of social state information by neuronal activities in the macaque caudate nucleus. Soc. Neurosci. 7, 42–58 (2012).

    Article  Google Scholar 

  22. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84 (2009).

    Article  CAS  Google Scholar 

  23. Paton, J.J., Belova, M.A., Morrison, S.E. & Salzman, C.D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article  CAS  Google Scholar 

  24. Moll, J. et al. Human fronto-mesolimbic networks guide decisions about charitable donation. Proc. Natl. Acad. Sci. USA 103, 15623–15628 (2006).

    Article  CAS  Google Scholar 

  25. Harbaugh, W.T., Mayr, U. & Burghart, D.R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).

    Article  CAS  Google Scholar 

  26. Hare, T.A., Camerer, C.F., Knoepfle, D.T. & Rangel, A. Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. J. Neurosci. 30, 583–590 (2010).

    Article  CAS  Google Scholar 

  27. Izuma, K., Saito, D.N. & Sadato, N. Processing of the incentive for social approval in the ventral striatum during charitable donation. J. Cogn. Neurosci. 22, 621–631 (2010).

    Article  Google Scholar 

  28. Kuss, K. et al. A reward prediction error for charitable donations reveals outcome orientation of donators. Soc. Cogn. Affect. Neurosci. published online, doi:10.1093/scan/nsr088 (23 December 2011).

  29. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  30. Sohn, J.W. & Lee, D. Effects of reward expectancy on sequential eye movements in monkeys. Neural Netw. 19, 1181–1191 (2006).

    Article  Google Scholar 

  31. Bowman, E.M., Aigner, T.G. & Richmond, B.J. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J. Neurophysiol. 75, 1061–1073 (1996).

    Article  CAS  Google Scholar 

  32. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    Article  CAS  Google Scholar 

  33. Chang, S.W., Winecoff, A.A. & Platt, M.L. Vicarious reinforcement in rhesus macaques (Macaca mulatta). Front. Neurosci. 5, 27 (2011).

    Article  Google Scholar 

  34. Chang, S.W., Barter, J.W., Ebitz, R.B., Watson, K.K. & Platt, M.L. Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta). Proc. Natl. Acad. Sci. USA 109, 959–964 (2012).

    Article  CAS  Google Scholar 

  35. Carter, C.S. et al. Anterior cingulate cortex, error detection and the online monitoring of performance. Science 280, 747–749 (1998).

    Article  CAS  Google Scholar 

  36. Ito, S., Stuphorn, V., Brown, J.W. & Schall, J.D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    Article  CAS  Google Scholar 

  37. Alexander, W.H. & Brown, J.W. Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 14, 1338–1344 (2011).

    Article  CAS  Google Scholar 

  38. Amodio, D.M. & Frith, C.D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    Article  CAS  Google Scholar 

  39. Azzi, J.C., Sirigu, A. & Duhamel, J.R. Modulation of value representation by social context in the primate orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 109, 2126–2131 (2012).

    Article  CAS  Google Scholar 

  40. Cohen, Y.E. & Andersen, R.A. A common reference frame for movement plans in the posterior parietal cortex. Nat. Rev. Neurosci. 3, 553–562 (2002).

    Article  CAS  Google Scholar 

  41. Yoshida, K., Saito, N., Iriki, A. & Isoda, M. Representation of others' action by neurons in monkey medial frontal cortex. Curr. Biol. 21, 249–253 (2011).

    Article  CAS  Google Scholar 

  42. Saxe, R. Uniquely human social cognition. Curr. Opin. Neurobiol. 16, 235–239 (2006).

    Article  CAS  Google Scholar 

  43. Waytz, A., Zaki, J. & Mitchell, J.P. Response of dorsomedial prefrontal cortex predicts altruistic behavior. J. Neurosci. 32, 7646–7650 (2012).

    Article  CAS  Google Scholar 

  44. Mobbs, D. et al. A key role for similarity in vicarious reward. Science 324, 900 (2009).

    Article  CAS  Google Scholar 

  45. Seo, H. & Lee, D. Cortical mechanisms for reinforcement learning in competitive games. Phil. Trans. R. Soc. Lond. B 363, 3845–3857 (2008).

    Article  Google Scholar 

  46. Burke, C.J., Tobler, P.N., Baddeley, M. & Schultz, W. Neural mechanisms of observational learning. Proc. Natl. Acad. Sci. USA 107, 14431–14436 (2010).

    Article  CAS  Google Scholar 

  47. Hampton, A.N., Bossaerts, P. & O'Doherty, J.P. Neural correlates of mentalizing-related computations during strategic interactions in humans. Proc. Natl. Acad. Sci. USA 105, 6741–6746 (2008).

    Article  CAS  Google Scholar 

  48. Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat. Neurosci. 13, 482–488 (2010).

    Article  CAS  Google Scholar 

  49. Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).

    Article  CAS  Google Scholar 

  50. Paxinos, G., Huang, X.F & Toga, A.W. The Rhesus Monkey Brain in Stereotaxic Coordinates (Academic Press, 2000).

  51. Vogt, B.A. & Pandya, D.N. Cingulate cortex of the rhesus monkey. II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).

    Article  CAS  Google Scholar 

  52. Carmichael, S.T. & Price, J.L. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.M. Groh, J.M. Pearson, D.L. Barack, R.B. Ebitz, E.S. Bromberg-Martin, K.K. Watson and B.Y. Hayden for helpful discussions. We are very grateful to S.P. Wise and C. Padoa-Schioppa for insightful discussions and comments on earlier versions of the manuscript. We also thank M.L. Carlson for general technical assistance. This work was supported by a T32 Postdoctoral Training Grant on Fundamental and Translational Neuroscience (S.W.C.C., 2T32NS051156–06), a Ruth K. Broad Biomedical Foundation Postdoctoral Grant (S.W.C.C.), a Canadian Institutes of Health Research Doctoral research award (J.-F.G., 84765), the National Institute of Mental Health (M.L.P. and S.W.C.C., MH095894) and the Department of Defense (M.L.P. and S.W.C.C., W81XWH-11-1-0584).

Author information

Authors and Affiliations

Authors

Contributions

S.W.C.C. and M.L.P. designed the study and wrote the paper. S.W.C.C. and J.-F.G. performed the experiments and S.W.C.C. analyzed the data.

Corresponding author

Correspondence to Steve W C Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 662 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S., Gariépy, JF. & Platt, M. Neuronal reference frames for social decisions in primate frontal cortex. Nat Neurosci 16, 243–250 (2013). https://doi.org/10.1038/nn.3287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing