Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of dietary choice by the decision-making circuitry

Abstract

To advance our understanding of how the brain makes food decisions, it is essential to combine knowledge from two fields that have not yet been well integrated: the neuro-computational basis of decision-making and the homeostatic regulators of feeding. This Review integrates these two literatures from a neuro-computational perspective, with an emphasis in describing the variables computed by different neural systems and how they affect dietary choice. We highlight what is unique about feeding decisions, the mechanisms through which metabolic and endocrine factors affect the decision-making circuitry, why making healthy food choices is difficult for many people, and key processes at work in the obesity epidemic.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Description of how the goal-directed system can compute the value of a stimulus; for example, an ice-cream sundae.
Figure 3

Similar content being viewed by others

References

  1. Rangel, A., Camerer, C. & Montague, P.R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kable, J.W. & Glimcher, P.W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Williams, K.W. & Elmquist, J.K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berthoud, H.R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr. Opin. Neurobiol. 21, 888–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kenny, P.J. Reward mechanisms in obesity: new insights and future directions. Neuron 69, 664–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daw, N. & O'Doherty, J.P. Multiple systems for value learning. in Neuroeconomics: Decision Making and the Brain 2nd edn. (eds. Glimcher, P. & Fehr, E.) (Academic Press, New York, 2013).

  7. Stowers, L., Cameron, P. & Keller, J.A. Ominous odors: olfactory control of instinctive fear and aggression in mice. Curr. Opin. Neurobiol. 23, 339–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gross, C.T. & Canteras, N.S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Ostlund, S.B. & Balleine, B.W. Orbitofrontal cortex mediates outcome encoding in pavlovian but not instrumental conditioning. J. Neurosci. 27, 4819–4825 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niv, Y. & Montague, P.R. Theoretical and empirical studies of learning. in Neuroeconomics: Decision-Making and the Brain (eds. Glimcher, P.W., Fehr, E., Camerer, C. & Poldrack, R.) (Elsevier, 2008).

  11. Yin, H.H. & Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. de Wit, S. et al. Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. J. Neurosci. 32, 12066–12075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tricomi, E., Balleine, B.W. & O'Doherty, J.P. A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29, 2225–2232 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Balleine, B.W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Valentin, V.V., Dickinson, A. & O'Doherty, J.P. Determining the neural substrates of goal-directed learning in the human brain. J. Neurosci. 27, 4019–4026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Wit, S., Corlett, P.R., Aitken, M.R., Dickinson, A. & Fletcher, P.C. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J. Neurosci. 29, 11330–11338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P. & Dolan, R.J. Model-based influences on humans' choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin, H.H., Ostlund, S.B., Knowlton, B.J. & Balleine, B.W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523 (2005).

    Article  PubMed  Google Scholar 

  20. Wimmer, E.G. & Shohamy, D. The striatum and beyond: contributions of the hippocampus to decision making. in Attention and Performance XXII (eds. Delgado, M., Phelps E.A. & Robbins, T.W.) (Oxford University Press, Oxford, 2011).

  21. Rangel, A. & Clithero, J. The computation of stimulus values in simple choice. in Neuroeconomics: Decision Making and the Brain 2nd edn. (eds. Glimcher, P. & Fehr, E.) (Academic Press, 2013).

  22. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wallis, J.D. & Miller, E.K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

    Article  PubMed  Google Scholar 

  24. Camille, N., Griffiths, C.A., Vo, K., Fellows, L.K. & Kable, J.W. Ventromedial frontal lobe damage disrupts value maximization in humans. J. Neurosci. 31, 7527–7532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plassmann, H., O'Doherty, J.P. & Rangel, A. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J. Neurosci. 30, 10799–10808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harris, A., Adolphs, R., Camerer, C. & Rangel, A. Dynamic construction of stimulus values in the ventromedial prefrontal cortex. PLoS ONE 6, e21074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hare, T.A., Schultz, W., Camerer, C.F., O'Doherty, J.P. & Rangel, A. Transformation of stimulus value signals into motor commands during simple choice. Proc. Natl. Acad. Sci. USA 108, 18120–18125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basten, U., Biele, G., Heekeren, H.R. & Fiebach, C.J. How the brain integrates costs and benefits during decision making. Proc. Natl. Acad. Sci. USA 107, 21767–21772 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Balleine, B.W. & Dickinson, A. The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory. J. Neurosci. 20, 8954–8964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daw, N.D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Hare, T.A., Camerer, C. & Rangel, A. Self-control in decision-making involves modulation of the vMPFC valuation system. Science 324, 646–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Hare, T.A., Malmaud, J. & Rangel, A. Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. J. Neurosci. 31, 11077–11087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berridge, K.C. Pleasures of the brain. Brain Cogn. 52, 106–128 (2003).

    Article  PubMed  Google Scholar 

  34. Kringelbach, M.L. The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Smith, K.S. & Berridge, K.C. The ventral pallidum and hedonic reward: Neurochemical maps of sucrose “liking” and food intake. J. Neurosci. 25, 8637–8649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith, K.S. & Berridge, K.C. Opioid limbic circuit for reward: Interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27, 1594–1605 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kringelbach, M.L., O'Doherty, J., Rolls, E.T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Rolls, E.T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Plassmann, H., O'Doherty, J., Shiv, B. & Rangel, A. Marketing actions can modulate neural representations of experienced pleasantness. Proc. Natl. Acad. Sci. USA 105, 1050–1054 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berridge, K.C. & Robinson, T.E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Wassum, K.M., Ostlund, S.B., Maidment, N.T. & Balleine, B.W. Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proc. Natl. Acad. Sci. USA 106, 12512–12517 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bayer, H.M. & Glimcher, P.W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knutson, B., Adams, C.M., Fong, G.W. & Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, RC159 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J. & Frith, C.D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berns, G.S., McClure, S.M., Pagnoni, G. & Montague, P.R. Predictability modulates human brain response to reward. J. Neurosci. 21, 2793–2798 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cromwell, H.C. & Schultz, W. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J. Neurophysiol. 89, 2823–2838 (2003).

    Article  PubMed  Google Scholar 

  47. Lin, A., Adolphs, R. & Rangel, A. Social and monetary reward learning engage overlapping neural substrates. Soc. Cogn. Affect. Neurosci. 7, 274–281 (2012).

    Article  PubMed  Google Scholar 

  48. Small, D.M., Jones-Gotman, M. & Dagher, A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19, 1709–1715 (2003).

    Article  PubMed  Google Scholar 

  49. Wang, L.P. et al. NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron 72, 1055–1066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pecina, S., Cagniard, B., Berridge, K.C., Aldridge, J.W. & Zhuang, X. Hyperdopaminergic mutant mice have higher 'wanting' but not 'liking' for sweet rewards. Behav. Pharmacol. 15, 9395–9402 (2004).

    Article  Google Scholar 

  51. de Araujo, I.E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Beeler, J.A., Fraixer, C.R.M. & Zhuang, X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front. Integr. Neurosci. 6, 49 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Price, J.L. & Amaral, D.G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1, 1242–1259 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-Amphetamine. J. Neurosci. 19, 2401–2411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parkinson, J.A. et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav. Brain Res. 137, 149–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Rossato, J.I., Bevilaqua, L.R., Izquierdo, I., Medina, J.H. & Cammarota, M. Dopamine controls persistence of long-term memory storage. Science 325, 1017–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Cannon, C.M. & Palmiter, R.D. Reward without dopamine. J. Neurosci. 23, 10827–10831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia, J. & Koelling, R.A. Relation of cue to consequence in avoidance learning. Psychon. Sci. 4, 123–124 (1966).

    Article  Google Scholar 

  59. Kelley, A.E., Baldo, B.A., Pratt, W.E. & Will, M.J. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 86, 773–795 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S. & Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Benoit, S.C., Clegg, D.J., Seeley, R.J. & Woods, S.C. Insulin and leptin as adiposity signals. Recent Prog. Horm. Res. 59, 267–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Szczypka, M.S., Rainey, M.A. & Palmiter, R.D. Dopamine is required for hyperphagia in Lep(ob/ob) mice. Nat. Genet. 25, 102–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Hommel, J.D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Elmquist, J.K., Bjorbaek, C., Ahima, R.S., Flier, J.S. & Saper, C.B. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395, 535–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Farooqi, I.S. et al. Leptin regulates striatal regions and human eating behavior. Science 317, 1355 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Shigemura, N., Miura, H., Kusakabe, Y., Hino, A. & Ninomiya, Y. Expression of leptin receptor (Ob-R) isoforms and signal transducers and activators of transcription (STATs) mRNAs in the mouse taste buds. Arch. Histol. Cytol. 66, 253–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Domingos, A.I. et al. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14, 1562–1568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Emond, M., Schwartz, G.J., Ladenheim, E.E. & Moran, T.H. Central leptin modulates behavioral and neural responsivity to CCK. Am. J. Physiol. 276, R1545–R1549 (1999).

    CAS  PubMed  Google Scholar 

  70. Lathe, R. Hormones and the hippocampus. J. Endocrinol. 169, 205–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Farr, S.A., Banks, W.A. & Morley, J.E. Effects of leptin on memory processing. Peptides 27, 1420–1425 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Cummings, D.E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Druce, M.R. et al. Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes. (Lond) 29, 1130–1136 (2005).

    Article  CAS  Google Scholar 

  75. Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carlini, V.P. et al. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem. Biophys. Res. Commun. 313, 635–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Zigman, J.M., Jones, J.E., Lee, C.E., Saper, C.B. & Elmquist, J.K. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494, 528–548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Overduin, J., Figlewicz, D.P., Bennett-Jay, J., Kittleson, S. & Cummings, D.E. Ghrelin increases the motivation to eat, but does not alter food palatability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R259–R269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Malik, S., McGlone, F., Bedrossian, D. & Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Crum, A.J., Corbin, W.R., Brownell, K.D. & Salovey, P. Mind over milkshakes: mindsets, not just nutrients, determine ghrelin response. Health Psychol. 30, 424–429 (2011).

    Article  PubMed  Google Scholar 

  82. Simon, S.A., de Araujo, I.E., Gutierrez, R. & Nicolelis, M.A. The neural mechanisms of gustation: a distributed processing code. Nat. Rev. Neurosci. 7, 890–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Margules, D.L. & Olds, J. Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats. Science 135, 374–375 (1962).

    Article  CAS  PubMed  Google Scholar 

  84. Lenoir, M., Serre, F., Cantin, L. & Ahmed, S.H. Intense Sweetness Surpasses Cocaine Reward. PLoS ONE 2, e698 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Apfelbaum, M. & Mandenoff, A. Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacol. Biochem. Behav. 15, 89–91 (1981).

    Article  CAS  PubMed  Google Scholar 

  86. Drucker, D.B., Ackroff, K. & Sclafani, A. Nutrient-conditioned flavor preference and acceptance in rats: effects of deprivation state and nonreinforcement. Physiol. Behav. 56, 701–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Ikeda, S., Kang, M.I. & Ohtake, F. Hyperbolic discounting, the sign effect, and the body mass index. J. Health Econ. 29, 268–284 (2010).

    Article  PubMed  Google Scholar 

  88. Beaver, J.D. et al. Individual differences in reward drive predict neural responses to images of food. J. Neurosci. 26, 5160–5166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oswald, K.D., Murdaugh, D.L., King, V.L. & Boggiano, M.M. Motivation for palatable food despite consequences in an animal model of binge eating. Int. J. Eat. Disord. 44, 203–211 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wansink, B. Mindless Eating: Why We Eat More Than We Think (Bantam, New York, 2010).

  91. Cutler, D.M., Glaeser, E.L. & Shapiro, J.M. Why have Americans become more obese? J. Econ. Perspect. 17, 93–118 (2003).

    Article  Google Scholar 

  92. Mann, T. & Ward, A. Attention, self-control and health behaviors. Curr. Dir. Psychol. Sci. 16, 280–283 (2007).

    Article  Google Scholar 

  93. Clegg, D.J. et al. Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R981–R986 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. De Souza, C.T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Kanoski, S.E., Meisel, R.L., Mullins, A.J. & Davidson, T.L. The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav. Brain Res. 182, 57–66 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Higgs, S. Memory and its role in appetite regulation. Physiol. Behav. 85, 67–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Rozin, P., Dow, S., Moscovitch, M. & Rajaram, S. What causes humans to begin and end a meal? A role for memory for what has been eaten, as evidenced by a study of multiple meal eating in amnesic patients. Psychol. Sci. 9, 392–396 (1998).

    Article  Google Scholar 

  98. Clifton, P.G., Vickers, S.P. & Somerville, E.M. Little and often: ingestive behavior patterns following hippocampal lesions in rats. Behav. Neurosci. 112, 502–511 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Rothemund, Y. et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37, 410–421 (2007).

    Article  PubMed  Google Scholar 

  100. Marteau, T.M., Hollands, G.J. & Fletcher, P.C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the National Science Foundation (AR3.SELFCNTRL-1-NSF.ARR1), the Lipper Foundation, and the Betty and Gordon Moore Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rangel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel, A. Regulation of dietary choice by the decision-making circuitry. Nat Neurosci 16, 1717–1724 (2013). https://doi.org/10.1038/nn.3561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing