Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

Abstract

In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ9-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of treatment with Ro 61-8048 on the extracellular concentration of kynurenic acid (KYNA) in NAc shell and VTA of freely moving rats.
Figure 2: Effects of elevated brain KYNA on THC-induced elevations of extracellular dopamine (that is, dopamine overflow) in NAc shell and VTA of freely moving rats.
Figure 3: Prevention of the neurochemical effects of Ro 61-8048 by two agonists at the allosteric potentiating site of the α7nAChR, galantamine and PNU120596.
Figure 4: Effects of treatment with Ro 61-8048 on abuse-related effects of the synthetic CB1 agonist WIN 55,212-2 in rats.
Figure 5: Effects of Ro 61-8048 on THC, food and cocaine self-administration in squirrel monkeys.
Figure 6: Reversal of behavioral effects of Ro 61-8048 by positive allosteric modulators of α7nAChRs.
Figure 7: Effects of Ro 61-8048 and THC on working memory in rats and squirrel monkeys.
Figure 8: Effects of Ro 61-8048 on discriminative-stimulus effects of THC in rats and squirrel monkeys.

Similar content being viewed by others

References

  1. Substance Abuse and Mental Health Services Administration. Results from the 2009 National Survey on Drug Use and Health: Volume I. Summary of National Findings (Rockville, Maryland, USA, 2010).

  2. Gardner, E.L. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol. Biochem. Behav. 81, 263–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Solinas, M., Goldberg, S.R. & Piomelli, D. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 154, 369–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diana, M., Melis, M. & Gessa, G.L. Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur. J. Neurosci. 10, 2825–2830 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. French, E.D., Dillon, K. & Wu, X. Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8, 649–652 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J.P. et al. Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology (Berl.) 102, 156–162 (1990).

    Article  CAS  Google Scholar 

  7. Tanda, G., Pontieri, F.E. & Di Chiara, G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276, 2048–2050 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Dani, J.A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Fu, Y., Matta, S.G., Gao, W., Brower, V.G. & Sharp, B.M. Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J. Pharmacol. Exp. Ther. 294, 458–465 (2000).

    CAS  PubMed  Google Scholar 

  10. Kaiser, S. & Wonnacott, S. alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol. Pharmacol. 58, 312–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Solinas, M. et al. Nicotinic alpha 7 receptors as a new target for treatment of cannabis abuse. J. Neurosci. 27, 5615–5620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinstein, A.M. & Gorelick, D.A. Pharmacological treatment of cannabis dependence. Curr. Pharm. Des. 17, 1351–1358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arias, H.R. et al. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int. J. Biochem. Cell Biol. 41, 1441–1451 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Roegge, C.S. & Levin, E.D. Nicotinic receptor antagonists in rats. in Animal Models of Cognitive Impairment (eds. Levin, E.D. & Buccafusco, J.J.) (CRC, Boca Raton, Florida, USA, 2006).

  15. Arias, H.R. Positive and negative modulation of nicotinic receptors. Adv. Protein Chem. Struct. Biol. 80, 153–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bertrand, D. et al. Positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2–M3 segment. Mol. Pharmacol. 74, 1407–1416 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Perkins, M.N. & Stone, T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 247, 184–187 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Kiss, C. et al. Kynurenate production by cultured human astrocytes. J. Neural Transm. 110, 1–14 (2003).

    CAS  PubMed  Google Scholar 

  20. Moroni, F., Russi, P., Lombardi, G., Beni, M. & Carla, V. Presence of kynurenic acid in the mammalian brain. J. Neurochem. 51, 177–180 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Kessler, M., Terramani, T., Lynch, G. & Baudry, M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J. Neurochem. 52, 1319–1328 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Alkondon, M. et al. Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J. Neurosci. 24, 4635–4648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hilmas, C. et al. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J. Neurosci. 21, 7463–7473 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopes, C. et al. Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at alpha7* nicotinic receptors. J. Pharmacol. Exp. Ther. 322, 48–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Amori, L. et al. Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum. Neuroscience 159, 196–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, H.Q. et al. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J. Mol. Neurosci. 40, 204–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Zmarowski, A. et al. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur. J. Neurosci. 29, 529–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Carpenedo, R. et al. Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur. J. Neurosci. 13, 2141–2147 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Rassoulpour, A., Wu, H.Q., Ferre, S. & Schwarcz, R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J. Neurochem. 93, 762–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Schwarcz, R., Bruno, J.P., Muchowski, P.J. & Wu, H.Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13, 465–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Justinova, Z., Tanda, G., Redhi, G.H. & Goldberg, S.R. Self-administration of delta9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology (Berl.) 169, 135–140 (2003).

    Article  CAS  Google Scholar 

  32. Justinova, Z. et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol. Psychiatry 64, 930–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amaral, M. et al. Structural basis of kynurenine 3-monooxygenase inhibition. Nature 496, 382–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moroni, F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 375, 87–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Grégoire, L. et al. Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav. Brain Res. 186, 161–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Zwilling, D. et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukui, S., Schwarcz, R., Rapoport, S.I., Takada, Y. & Smith, Q.R. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56, 2007–2017 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Turski, W.A., Gramsbergen, J.B., Traitler, H. & Schwarcz, R. Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine. J. Neurochem. 52, 1629–1636 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Turski, W.A. & Schwarcz, R. On the disposition of intrahippocampally injected kynurenic acid in the rat. Exp. Brain Res. 71, 563–567 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Uwai, Y., Honjo, H. & Iwamoto, K. Interaction and transport of kynurenic acid via human organic anion transporters hOAT1 and hOAT3. Pharmacol. Res. 65, 254–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Röver, S., Cesura, A.M., Huguenin, P., Kettler, R. & Szente, A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. 40, 4378–4385 (1997).

    Article  PubMed  Google Scholar 

  42. Hurst, R.S. et al. A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J. Neurosci. 25, 4396–4405 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chess, A.C., Simoni, M.K., Alling, T.E. & Bucci, D.J. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr. Bull. 33, 797–804 (2007).

    Article  PubMed  Google Scholar 

  44. Pocivavsek, A. et al. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 36, 2357–2367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Navarrete, M. & Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68, 113–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Pistis, M., Porcu, G., Melis, M., Diana, M. & Gessa, G.L. Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur. J. Neurosci. 14, 96–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Pistis, M., Muntoni, A.L., Pillolla, G. & Gessa, G.L. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur. J. Neurosci. 15, 1795–1802 (2002).

    Article  PubMed  Google Scholar 

  48. Panlilio, L.V. et al. Combined effects of THC and caffeine on working memory in rats. Br. J. Pharmacol. 165, 2529–2538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Le Foll, B., Gorelick, D.A. & Goldberg, S.R. The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology (Berl.) 205, 171–174 (2009).

    Article  CAS  Google Scholar 

  50. Cozzi, A., Carpenedo, R. & Moroni, F. Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61–8048) in models of focal or global brain ischemia. J. Cereb. Blood Flow Metab. 19, 771–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, San Diego, 1998).

  52. Fadda, P., Scherma, M., Fresu, A., Collu, M. & Fratta, W. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse 50, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Fattore, L. et al. Bidirectional regulation of mu-opioid and CB1-cannabinoid receptor in rats self-administering heroin or WIN 55,212-2. Eur. J. Neurosci. 25, 2191–2200 (2007).

    Article  PubMed  Google Scholar 

  54. Goldberg, S.R. Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J. Pharmacol. Exp. Ther. 186, 18–30 (1973).

    CAS  PubMed  Google Scholar 

  55. Panlilio, L.V., Yasar, S., Thorndike, E.B., Goldberg, S.R. & Schindler, C.W. Automatic recording of mediating behavior in delayed matching- and nonmatching-to-position procedures in rats. Psychopharmacology (Berl.) 214, 495–504 (2011).

    Article  CAS  Google Scholar 

  56. Kangas, B.D., Berry, M.S. & Branch, M.N. On the development and mechanics of delayed matching-to-sample performance. J. Exp. Anal. Behav. 95, 221–236 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kangas, B.D. & Bergman, J. A novel touch-sensitive apparatus for behavioral studies in unrestrained squirrel monkeys. J. Neurosci. Methods 209, 331–336 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Solinas, M., Panlilio, L.V., Antoniou, K., Pappas, L.A. & Goldberg, S.R. The cannabinoid CB1 antagonist N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl) -4-methylpyrazole-3-carboxamide (SR-141716A) differentially alters the reinforcing effects of heroin under continuous reinforcement, fixed ratio, and progressive ratio schedules of drug self-administration in rats. J. Pharmacol. Exp. Ther. 306, 93–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Kangas, B.D. et al. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists. J. Pharmacol. Exp. Ther. 344, 561–567 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Thorndike for excellent technical assistance during the rodent studies. We thank I. Baum, S. Stevens and P. White for excellent veterinary assistance during the primate studies. This study was supported in part by the Intramural Research Program of the National Institute on Drug Abuse (NIDA), National Institutes of Health, Department of Health and Human Services, NIDA Residential Research Support Services Contract N01 DA59909 (principal investigator D. Kelly), by the Italian Ministry of University and Scientific Research, by DA023142 (J.B.) and DA035974 (B.D.K.) and by the Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine. T.Z. was supported by a Grant from Regione Autonoma della Sardegna and by the European Social Fund, LR7 2007.

Author information

Authors and Affiliations

Authors

Contributions

Z.J. was involved in the design of the study, supervised and analyzed the primate self-administration and reinstatement experiments and rodent drug discrimination experiments, and wrote the first draft of the manuscript. P.M. was involved in design of the study, conducted microdialysis experiments including collection of all samples, performed dopamine assay, analyzed microdialysis data and helped prepare the final draft of the manuscript. H.-Q.W. analyzed KYNA levels in microdialysis samples. M.E.S. conducted and analyzed microdialysis experiments with local KYNA infusion and PNU120596. G.H.R. conducted the primate self-administration and reinstatement experiments. L.V.P designed and analyzed the experiments with delayed nonmatching to position and was involved in discussions of the data. C.B. conducted rodent drug discrimination experiments and was involved in discussions of the data. T.Z. conducted the rat self-administration and microdialysis experiments with WIN 55,212-2. M. Scherma supervised the rat self-administration and microdialysis experiments with WIN 55,212-2, analyzed the data and was involved in the discussions of the data. W.F. was involved in the discussions of the data. A.P. assisted in conducting the microdialysis experiments with THC. J.B. and B.D.K. designed, conducted and analyzed the data from the primate discrimination and memory experiments. S.F., M. Solinas, M.P. and G.T. were involved in the design of the study and discussions of the data. R.S. and S.R.G. conceived, designed and supervised the study and edited the manuscript.

Corresponding author

Correspondence to Steven R Goldberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Ro 61-8048 reverses the depressant effects of THC on food self-administration in monkeys.

THC (0.56 mg/kg, i.v., immediately before the session) significantly decreased the number of food pellets self-administered over one-h sessions (a) and also decreased overall response rates (b) by squirrel monkeys under a fixed-ratio ten (FR10) schedule. Ro 61-8048 (20 mg/kg i.m., 40 min before session) did not significantly affect food-reinforced behavior, but reversed the effects of THC. The number of food pellets per session (a) and overall response rates in the presence of the green light signaling food availability (b) are shown. Each bar represents the mean ± s.e.m (n = 3). **P<0.01, post-hoc vs. vehicles condition; # P<0.05, ## P<0.01, post-hoc vs. vehicle + THC 0.56 condition, Bonferroni test.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 70 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justinova, Z., Mascia, P., Wu, HQ. et al. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat Neurosci 16, 1652–1661 (2013). https://doi.org/10.1038/nn.3540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing