Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GluA1 phosphorylation at serine 831 in the lateral amygdala is required for fear renewal

Abstract

Fear renewal, a widely pursued model of post-traumatic stress disorder and phobias, refers to the context-specific relapse of conditioned fear after extinction. However, its molecular mechanisms are largely unknown. We found that renewal-inducing stimuli, generally believed to be insufficient to induce synaptic plasticity, enhanced excitatory synaptic strength, activity of synaptic GluA2-lacking AMPA receptors and Ser831 phosphorylation of synaptic surface GluA1 in the lateral nucleus of the amygdala (LAn) of fear-extinguished rats. Consistently, the induction threshold for LAn synaptic potentiation was considerably lowered after extinction, and renewal occluded this low-threshold potentiation. The low-threshold potentiation (a potential cellular substrate for renewal), but not long-term potentiation, was attenuated by dialysis into LAn neurons of a GluA1-derived peptide that competes with Ser831-phosphorylated GluA1. Microinjections of the same peptide into the LAn attenuated fear renewal, but not fear learning. Our findings suggest that GluA1 phosphorylation constitutes a promising target for clinical treatment of aberrant fear-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Renewal-inducing stimuli produce a context-specific enhancement of synaptic efficacy at T-LAn synapses.
Figure 2: Renewal-inducing stimuli enhance the amplitude of AMPAR-mediated mEPSCs at T-LAn synapses in a context-specific manner.
Figure 3: Renewal-inducing stimuli enhance GluA2-lacking AMPAR activity at T-LAn synapses in a context-specific manner.
Figure 4: Renewal-inducing stimuli enhance Ser831 phosphorylation of surface GluA1 in LAn synaptosomes in a context-specific manner.
Figure 5: The presentation of a tone CSt to conditioned rats does not change both synaptic efficacy and GluA1 phosphorylation at LAn synapses.
Figure 6: Induction threshold for T-LAn synaptic potentiation is lowered after extinction of conditioned fear.
Figure 7: The GluA1D peptide inhibits low-threshold potentiation, but not LTP or fear conditioning.
Figure 8: Microinjection of a cell–permeable form of the GluA1D peptide into the LAn attenuates fear renewal.

Similar content being viewed by others

References

  1. Bouton, M.E. Context and ambiguity in the extinction of emotional learning: implications for exposure therapy. Behav. Res. Ther. 26, 137–149 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Myers, K.M. & Davis, M. Behavioral and neural analysis of extinction. Neuron 36, 567–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Maren, S. & Quirk, G.J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Sotres-Bayon, F., Bush, D.E.A. & Ledoux, J.E. Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn. Mem. 11, 525–535 (2004).

    Article  PubMed  Google Scholar 

  5. Rachman, S. The return of fear: review and prospect. Clin. Psychol. Rev. 9, 147–168 (1989).

    Article  Google Scholar 

  6. Hermans, D., Craske, M.G., Mineka, S. & Lovibond, P.F. Extinction in human fear conditioning. Biol. Psychiatry 60, 361–368 (2006).

    Article  PubMed  Google Scholar 

  7. Corcoran, K.A. & Maren, S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci. 21, 1720–1726 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouton, M.E., Westbrook, R.F., Corcoran, K.A. & Maren, S. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol. Psychiatry 60, 352–360 (2006).

    Article  PubMed  Google Scholar 

  9. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Knapska, E. & Maren, S. Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn. Mem. 16, 486–493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woods, A.M. & Bouton, M.E. D-cycloserine facilitates extinction but does not eliminate renewal of the conditioned emotional response. Behav. Neurosci. 120, 1159–1162 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gogolla, N., Caroni, P., Lüthi, A. & Herry, C. Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Kindt, M., Soeter, M. & Vervliet, B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nat. Neurosci. 12, 256–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Monfils, M.-H., Cowansage, K.K., Klann, E. & Ledoux, J.E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324, 951–955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gale, G.D. et al. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J. Neurosci. 24, 3810–3815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maren, S. Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70, 830–845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Maren, S. & Hobin, J.A. Hippocampal regulation of context-dependent neuronal activity in the lateral amygdala. Learn. Mem. 14, 318–324 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hobin, J.A., Goosens, K.A. & Maren, S. Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J. Neurosci. 23, 8410–8416 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amano, T., Duvarci, S., Popa, D. & Paré, D. The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J. Neurosci. 31, 15481–15489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anglada-Figueroa, D. & Quirk, G.J. Lesions of the basal amygdala block expression of conditioned fear but not extinction. J. Neurosci. 25, 9680–9685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paré, D., Quirk, G.J. & Ledoux, J.E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  PubMed  Google Scholar 

  23. Derkach, V., Barria, A. & Soderling, T.R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kristensen, A.S. et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14, 727–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oh, M.C., Derkach, V.A., Guire, E.S. & Soderling, T.R. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol. Chem. 281, 752–758 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Derkach, V.A., Oh, M.C., Guire, E.S. & Soderling, T.R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat. Rev. Neurosci. 8, 101–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, H.-K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Crombag, H.S. et al. A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning. Behav. Brain Res. 191, 178–183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, H.-K., Takamiya, K., He, K., Song, L. & Huganir, R.L. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J. Neurophysiol. 103, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Whitlock, J.R., Heynen, A.J., Shuler, M.G. & Bear, M.F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J. et al. Amygdala depotentiation and fear extinction. Proc. Natl. Acad. Sci. USA 104, 20955–20960 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, J. et al. Reactivation of fear memory renders consolidated amygdala synapses labile. J. Neurosci. 30, 9631–9640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malinow, R. & Tsien, R.W. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346, 177–180 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Kessels, H.W., Kopec, C.D., Klein, M.E. & Malinow, R. Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution. Nat. Neurosci. 12, 888–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigues, S.M., Farb, C.R., Bauer, E.P., Ledoux, J.E. & Schafe, G.E. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. J. Neurosci. 24, 3281–3288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Otmakhov, N., Griffith, L.C. & Lisman, J.E. Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orsini, C.A., Kim, J.H., Knapska, E. & Maren, S. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J. Neurosci. 31, 17269–17277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 47, 783–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, C.-H., Lee, C.-C. & Gean, P.-W. Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol. Pharmacol. 63, 44–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Dalton, G.L., Wang, Y.T., Floresco, S.B. & Phillips, A.G. Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 33, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Mao, S.-C. et al. Inhibition of spontaneous recovery of fear by mGluR5 after prolonged extinction training. PLoS ONE 8, e59580 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abraham, W.C. & Bear, M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Selvakumar, B. et al. S-nitrosylation of AMPA receptor GluA1 regulates phosphorylation, single-channel conductance, and endocytosis. Proc. Natl. Acad. Sci. USA 110, 1077–1082 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, 1997).

  51. Kim, J. et al. Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. Biochem. Biophys. Res. Commun. 355, 188–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Pitkänen, A., Savander, V. & Ledoux, J.E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  PubMed  Google Scholar 

  53. Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X. & Huganir, R.L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain–containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dunah, A.W. & Standaert, D.G. Dopamine D1 receptor–dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J. Neurosci. 21, 5546–5558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is dedicated in loving memory to Sang-Soon Choi. We thank P. Sah for his valuable comments on our manuscript. This work was supported by a National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (No. 2011-0018209, S.C.), by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2011-0019226, S.C.) and by the Korean World Class Institute program (C.J.L.). B.S., Jeongyeon Kim, K.P., I.H., B.A., S.S., J.L., S.P. and Jihye Kim were supported by Brain Korea 21 Research Fellowships from the Korean Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

S.L., B.S., Jeongyeon Kim, K.K., K.S.S. and S.C. designed the experiments. S.L., B.S., Jeongyeon Kim, K.P., I.H., B.A., S.S., J.L., S.P. and Jihye Kim performed the experiments. S.L., B.S., Jeongyeon Kim, K.K., K.S.S., R.W.T. and S.C. analyzed the data. S.L., B.S., Jeongyeon Kim, D.P., C.J.L., K.K., K.S.S., R.W.T. and S.C. wrote the paper.

Corresponding authors

Correspondence to Kyungjin Kim, Ki Soon Shin or Sukwoo Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 5278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Song, B., Kim, J. et al. GluA1 phosphorylation at serine 831 in the lateral amygdala is required for fear renewal. Nat Neurosci 16, 1436–1444 (2013). https://doi.org/10.1038/nn.3491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing