Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An illusion predicted by V1 population activity implicates cortical topography in shape perception

Abstract

Mammalian primary visual cortex (V1) is topographically organized such that the pattern of neural activation in V1 reflects the location and spatial extent of visual elements in the retinal image, but it is unclear whether this organization contributes to visual perception. We combined computational modeling, voltage-sensitive dye imaging (VSDI) in behaving monkeys and behavioral measurements in humans to investigate whether the large-scale topography of V1 population responses influences shape judgments. Specifically, we used a computational model to design visual stimuli that had the same physical shape, but were predicted to elicit variable V1 response spread. We confirmed these predictions with VSDI. Finally, we designed a behavioral task in which human observers judged the shapes of these stimuli and found that their judgments were systematically distorted by the spread of V1 activity. This illusion suggests that the topographic pattern of neural population responses in visual cortex contributes to visual perception.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of two scales of functional organization in primary visual cortex.
Figure 2: Predicted effects of elongated receptive fields on the spatial distribution of V1 population responses.
Figure 3: Physiological stimuli and spatial distributions of V1 responses measured with VSDI.
Figure 4: Spatial properties of physiological responses for additional stimuli.
Figure 5: Modeling the relationship between the spatial extent of a visual stimulus and the retinotopic extent of its elicited cortical response.
Figure 6: Psychophysical results averaged across ten subjects.

References

  1. Regan, D., Hajdur, L.V. & Hong, X. Two-dimensional aspect ratio discrimination for shape defined by orientation texture. Vision Res. 36, 3695 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Regan, D. & Hamstra, S.J. Shape discrimination and the judgment of perfect symmetry: dissociation of shape from size. Vision Res. 32, 1845 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Regan, D. & Hamstra, S.J. Shape discrimination for rectangles defined by disparity alone, by disparity plus luminance and by disparity plus motion. Vision Res. 34, 2277 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Field, D.J., Hayes, A. & Hess, R.F. Contour integration by the human visual system: evidence for a local “association field”. Vision Res. 33, 173 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Kapadia, M.K., Ito, M., Gilbert, C.D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, H.R. & Wilkinson, F. Detection of global structure in Glass patterns: implications for form vision. Vision Res. 38, 2933 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Adams, D.L. & Horton, J.C. A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J. Neurosci. 23, 3771 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blasdel, G. & Campbell, D. Functional retinotopy of monkey visual cortex. J. Neurosci. 21, 8286 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hubel, D.H. & Weisel, T. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Tootell, R.B., Switkes, E., Silverman, M.S. & Hamilton, S.L. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8, 1531 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wandell, B.A., Dumoulin, S.O. & Brewer, A.A. Visual field maps in human cortex. Neuron 56, 366 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Z., Heeger, D.J. & Seidemann, E. Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey. J. Neurophysiol. 98, 1002 (2007).

    Article  PubMed  Google Scholar 

  13. Horton, J.C. & Adams, D.L. The cortical column: a structure without a function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1837 (2005).

    Article  Google Scholar 

  14. Chklovskii, D.B. & Koulakov, A.A. Maps in the brain: what can we learn from them? Annu. Rev. Neurosci. 27, 369 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Paik, S.-B. & Ringach, D.L. Link between orientation and retinotopic maps in primary visual cortex. Proc. Natl. Acad. Sci. USA 109, 7091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ringach, D.L. On the origin of the functional architecture of the cortex. PLoS ONE 2, e251 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. White, L.E. & Fitzpatrick, D. Vision and cortical map development. Neuron 56, 327 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma, W.J., Beck, J.M., Latham, P.E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Graf, A.B., Kohn, A., Jazayeri, M. & Movshon, J.A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14, 239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paradiso, M.A. A theory for the use of visual orientation information which exploits the columnar structure of the striate cortex. Biol. Cybern. 58, 35 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y., Geisler, W.S. & Seidemann, E. Optimal decoding of correlated neural population responses in the primate visual cortex. Nat. Neurosci. 9, 1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Valois, R.L., Albrecht, D.G. & Thorell, L.G. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22, 545 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Ringach, D.L. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88, 455 (2002).

    Article  PubMed  Google Scholar 

  25. Webster, M.A. & De Valois, R.L. Relationship between spatial-frequency and orientation tuning of striate-cortex cells. J. Opt. Soc. Am. A 2, 1124 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Van Essen, D.C., Newsome, W.T. & Maunsell, J.H. The visual field representation in striate cortex of macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 24, 429 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Mcllwain, J.T. Point images in the visual system: new interest in an old idea. Trends Neurosci. 9, 354 (1986).

    Article  Google Scholar 

  29. Palmer, C.R., Chen, Y. & Seidemann, E. Uniform spatial spread of population activity in primate parafoveal V1. J. Neurophysiol. 107, 1857 (2012).

    Article  PubMed  Google Scholar 

  30. Polat, U., Mizobe, K., Pettet, M. & Kasamatsu, T. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Polat, U. & Sagi, D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Res. 33, 993 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Williams, C.B. & Hess, R.F. Relationship between facilitation at threshold and suprathreshold contour integration. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 2046–2051 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Duncan, R.O. & Boynton, G.M. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38, 659 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Schwarzkopf, D.S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nat. Neurosci. 14, 28 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Fang, F., Boyaci, H., Kersten, D. & Murray, S.O. Attention-dependent representation of a size illusion in human V1. Curr. Biol. 18, 1707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murray, S.O., Boyaci, H. & Kersten, D. The representation of perceived angular size in human primary visual cortex. Nat. Neurosci. 9, 429–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Motter, B.C. Central V4 receptive fields are scaled by the V1 cortical magnification and correspond to a constant-sized sampling of the V1 surface. J. Neurosci. 29, 5749 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harvey, B.M. & Dumoulin, S.O. The relationship between cortical magnification factor and population receptive field size in human visual cortex: Constancies in cortical architecture. J. Neurosci. 31, 13604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dumoulin, S.O. & Hess, R.F. Cortical specialization for concentric shape processing. Vision Res. 47, 1608 (2007).

    Article  PubMed  Google Scholar 

  40. Hegdé, J. & Van Essen, D.C. A comparative study of shape representation in macaque visual areas v2 and v4. Cereb. Cortex 17, 1100 (2007).

    Article  PubMed  Google Scholar 

  41. Pasupathy, A. & Connor, C.E. Population coding of shape in area V4. Nat. Neurosci. 5, 1332 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ito, M. & Komatsu, H. Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J. Neurosci. 24, 3313–3324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teichert, T., Wachtler, T., Michler, F., Gail, A. & Eckhorn, R. Scale-invariance of receptive field properties in primary visual cortex. BMC Neurosci. 8, 38 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seidemann, E., Arieli, A., Grinvald, A. & Slovin, H. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295, 862 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y., Geisler, W.S. & Seidemann, E. Optimal temporal decoding of neural population responses in a reaction-time visual detection task. J. Neurophysiol. 99, 1366 (2008).

    Article  PubMed  Google Scholar 

  46. Chen, Y., Palmer, C.R. & Seidemann, E. The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1. J. Neurophysiol. 107, 3281 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nachmias, J. Shape and size discrimination compared. Vision Res. 51, 400 (2011).

    Article  PubMed  Google Scholar 

  48. van Aubel, A. & Gawronski, W. Analytic properties of noncentral distributions. Appl. Math. Comput. 141, 3 (2003).

    Google Scholar 

  49. Morgan, M., Dillenburger, B., Raphael, S. & Solomon, J.A. Observers can voluntarily shift their psychometric functions without losing sensitivity. Atten. Percept. Psychophys. 74, 185 (2012).

    Article  PubMed  Google Scholar 

  50. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Dow, B.M., Snyder, A., Vautin, R. & Bauer, R. Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp. Brain Res. 44, 213 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Hetherington, P.A. & Swindale, N.V. Receptive field and orientation scatter studied by tetrode recordings in cat area 17. Vis. Neurosci. 16, 637 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Cakic and other members of the Seidemann laboratory for their contributions to this project. This work was supported by grants from the National Eye Institute (R01EY016454 and R01EY16752 to E.S., and R01EY02688 and R01EY110747 to W.S.G.).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the design of the study and the planning of the analysis. M.M.M. designed the V1 population response model and performed the analysis. Y.C. and E.S. performed the physiological experiments. M.M.M. performed the psychophysical experiments. M.M.M., W.S.G. and E.S. wrote the paper with input from Y.C.

Corresponding author

Correspondence to Melchi M Michel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 694 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, M., Chen, Y., Geisler, W. et al. An illusion predicted by V1 population activity implicates cortical topography in shape perception. Nat Neurosci 16, 1477–1483 (2013). https://doi.org/10.1038/nn.3517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing