Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium-channel number critically influences synaptic strength and plasticity at the active zone

Abstract

How synaptic-vesicle release is controlled at the basic release structure, the active zone, is poorly understood. By performing cell-attached current and capacitance recordings predominantly at single active zones in rat calyces, we found that single active zones contained 5−218 (mean, 42) calcium channels and 1−10 (mean, 5) readily releasable vesicles (RRVs) and released 0−5 vesicles during a 2-ms depolarization. Large variation in the number of calcium channels caused wide variation in release strength (measured during a 2-ms depolarization) by regulating the RRV release probability (PRRV) and the RRV number. Consequently, an action potential opened 1–35 (mean, 7) channels, resulting in different release probabilities at different active zones. As the number of calcium-channels determined PRRV, it critically influenced whether subsequent release would be facilitated or depressed. Regulating calcium channel density at active zones may thus be a major mechanism to yield synapses with different release properties and plasticity. These findings may explain large differences reported at synapses regarding release strength (release of 0, 1 or multiple vesicles), PRRV, short-term plasticity, calcium transients and the requisite calcium-channel number for triggering release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-attached patch recording of calcium currents at the calyx release face.
Figure 2: Active-zone density at the calyx release face matches patch electrophysiology.
Figure 3: Single calcium-channel conductance and probability of a channel being open ('open probability') at the release face.
Figure 4: The impact of the calcium-channel number on release strength.
Figure 5: Impact of calcium-channel number on the release probability and the number of RRVs.
Figure 6: The impact of Nchannel on paired-pulse plasticity and the open channel number during an action potential.
Figure 7: The open calcium-channel number during an action potential.

Similar content being viewed by others

References

  1. Murthy, V.N., Sejnowski, T.J. & Stevens, C.F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  Google Scholar 

  2. Dobrunz, L.E. & Stevens, C.F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  Google Scholar 

  3. Xu-Friedman, M.A., Harris, K.M. & Regehr, W.G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001).

    Article  CAS  Google Scholar 

  4. Wadiche, J.I. & Jahr, C.E. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32, 301–313 (2001).

    Article  CAS  Google Scholar 

  5. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  6. Abbott, L.F. & Regehr, W.G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  Google Scholar 

  7. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurorsci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  8. Schikorski, T. & Stevens, C.F. Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4, 391–395 (2001).

    Article  CAS  Google Scholar 

  9. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  Google Scholar 

  10. Koester, H.J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  Google Scholar 

  11. Brenowitz, S.D. & Regehr, W.G. Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells. J. Neurosci. 27, 7888–7898 (2007).

    Article  CAS  Google Scholar 

  12. Adler, E.M., Augustine, G.J., Duffy, S.N. & Charlton, M.P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

  13. Stanley, E.F. Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11, 1007–1011 (1993).

    Article  CAS  Google Scholar 

  14. Borst, J.G.G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  Google Scholar 

  15. Wu, L.G., Westenbroek, R.E., Borst, J.G.G., Catterall, W.A. & Sakmann, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurorsci. 19, 726–736 (1999).

    Article  CAS  Google Scholar 

  16. Wu, L.G. & Borst, J.G.G. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 23, 821–832 (1999).

    Article  CAS  Google Scholar 

  17. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  Google Scholar 

  18. Moulder, K.L. & Mennerick, S. Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J. Neurosci. 25, 3842–3850 (2005).

    Article  CAS  Google Scholar 

  19. Wadel, K., Neher, E. & Sakaba, T. The Coupling between Synaptic Vesicles and Ca(2+) Channels Determines Fast Neurotransmitter Release. Neuron 53, 563–575 (2007).

    Article  CAS  Google Scholar 

  20. Shahrezaei, V., Cao, A. & Delaney, K.R. Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. J. Neurosci. 26, 13240–13249 (2006).

    Article  CAS  Google Scholar 

  21. Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nat. Neurosci. 13, 19–21 (2010).

    Article  CAS  Google Scholar 

  22. Kaeser, P.S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011).

    Article  CAS  Google Scholar 

  23. Han, Y., Kaeser, P.S., Sudhof, T.C. & Schneggenburger, R. RIM determines Ca(2)+ channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304–316 (2011).

    Article  CAS  Google Scholar 

  24. He, L., Wu, X.S., Mohan, R. & Wu, L.G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006).

    Article  CAS  Google Scholar 

  25. Sakmann, B. & Neher, E. Geometric parameters of pipettes and membrane patches. in Single-channel Recording (eds., Sakmann, B. & Neher, E.) 637–650 (Plenum Press, 1995).

  26. Gentet, L.J., Stuart, G.J. & Clements, J.D. Direct measurement of specific membrane capacitance in neurons. Biophys. J. 79, 314–320 (2000).

    Article  CAS  Google Scholar 

  27. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    Article  Google Scholar 

  28. Dondzillo, A. et al. Targeted three-dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing. J. Comp. Neurol. 518, 1008–1029 (2010).

    Article  CAS  Google Scholar 

  29. Xu, J. & Wu, L.G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46, 633–645 (2005).

    Article  CAS  Google Scholar 

  30. He, L. et al. Compound vesicle fusion increases quantal size and potentiates synaptic transmission. Nature 459, 93–97 (2009).

    Article  CAS  Google Scholar 

  31. Sun, J.Y., Wu, X.S. & Wu, L.G. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555–559 (2002).

    Article  CAS  Google Scholar 

  32. Wu, X.S. et al. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J. Neurosci. 27, 3046–3056 (2007).

    Article  CAS  Google Scholar 

  33. Fedchyshyn, M.J. & Wang, L.Y. Developmental transformation of the release modality at the calyx of held synapse. J. Neurosci. 25, 4131–4140 (2005).

    Article  CAS  Google Scholar 

  34. Wolfel, M., Lou, X. & Schneggenburger, R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J. Neurosci. 27, 3198–3210 (2007).

    Article  Google Scholar 

  35. Wu, X.S., Sun, J.Y., Evers, A.S., Crowder, M. & Wu, L.G. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100, 663–670 (2004).

    Article  CAS  Google Scholar 

  36. Wu, X.S. & Wu, L.G. Rapid endocytosis does not recycle vesicles within the readily releasable pool. J. Neurosci. 29, 11038–11042 (2009).

    Article  CAS  Google Scholar 

  37. Taschenberger, H., Leao, R.M., Rowland, K.C., Spirou, G.A. & Von Gersdorff, H. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36, 1127–1143 (2002).

    Article  CAS  Google Scholar 

  38. Sun, J.Y. & Wu, L.G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynatpic currents at a central synapse. Neuron 30, 171–182 (2001).

    Article  CAS  Google Scholar 

  39. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32, 1119–1131 (2001).

    Article  CAS  Google Scholar 

  40. Borst, J.G.G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 489, 825–840 (1995).

    Article  CAS  Google Scholar 

  41. Helmchen, F., Borst, J.G.G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    Article  CAS  Google Scholar 

  42. Schneggenburger, R., Meyer, A.C. & Neher, E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23, 399–409 (1999).

    Article  CAS  Google Scholar 

  43. Borst, J.G.G. & Sakmann, B. Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. (Lond.) 506, 143–157 (1998).

    Article  CAS  Google Scholar 

  44. Neher, E. & Sakaba, T. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held. J. Neurosci. 21, 444–461 (2001).

    Article  CAS  Google Scholar 

  45. Wölfel, M. & Schneggenburger, R. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J. Neurosci. 23, 7059–7068 (2003).

    Article  Google Scholar 

  46. Stanley, E.F. & Mirotznik, R.R. Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385, 340–343 (1997).

    Article  CAS  Google Scholar 

  47. Suh, B.C., Leal, K. & Hille, B. Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67, 224–238 (2010).

    Article  CAS  Google Scholar 

  48. Dolphin, A.C. Calcium channel diversity: multiple roles of calcium channel subunits. Curr. Opin. Neurobiol. 19, 237–244 (2009).

    Article  CAS  Google Scholar 

  49. Luo, F., Dittrich, M., Stiles, J.R. & Meriney, S.D. Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals. J. Neurosci. 31, 11268–11281 (2011).

    Article  CAS  Google Scholar 

  50. Weber, A.M. et al. N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release. Nat. Neurosci. 13, 1348–1350 (2010).

    Article  CAS  Google Scholar 

  51. Nowycky, M.C., Fox, A.P. & Tsien, R.W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443 (1985).

    Article  CAS  Google Scholar 

  52. Usowicz, M.M., Sugimori, M., Cherksey, B. & Llinás, R.R. P-type calcium channels in the somata and dendrites of adult cerebellar purkinje cells. Neuron 9, 1185–1199 (1992).

    Article  CAS  Google Scholar 

  53. Meinrenken, C.J., Borst, J.G. & Sakmann, B. Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Sätzler and J. Lübke for providing the electron microscopy data for analysis, and J. Diamond, J. Xu and M. Baydyuk for comments on the manuscript. This work was supported by the US National Institute of Neurological Disorders and Stroke Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

J.S. performed most experiments, designed experiments and participated in writing the paper. L.H. designed experiments and developed the method of patching single active zones. L.X. recorded whole-cell calcium currents in the presence of the P/Q-type channel blocker. F.L. participated in designing experiments. H.Z. and T.K. performed computational analysis of the active-zone density. D.T.Y. ensured low-noise single-channel recordings and contributed to experimental design. W.S. and T.S. assisted the project. L.-G.W. designed experiments, supervised the project and wrote the paper.

Corresponding author

Correspondence to Ling-Gang Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, J., He, L., Zheng, H. et al. Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci 15, 998–1006 (2012). https://doi.org/10.1038/nn.3129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing