Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity

Abstract

The usefulness of genetically encoded probes for optical monitoring of neuronal activity and brain circuits would be greatly advanced by the generation of multiple indicators with non-overlapping color spectra. Most existing indicators are derived from or spectrally convergent on GFP. We generated a bright, red, pH-sensitive fluorescent protein, pHTomato, that can be used in parallel with green probes to monitor neuronal activity. SypHTomato, made by fusing pHTomato to the vesicular membrane protein synaptophysin, reported activity-dependent exocytosis as efficiently as green reporters. When expressed with the GFP-based indicator GCaMP3 in the same neuron, sypHTomato enabled concomitant imaging of transmitter release and presynaptic Ca2+ transients at single nerve terminals. Expressing sypHTomato and GCaMP3 in separate cells enabled the simultaneous determination of presynaptic vesicular turnover and postsynaptic sub- and supra-threshold responses from a connected pair of neurons. With these new tools, we observed a close size matching between pre- and postsynaptic compartments, as well as interesting target cell–dependent regulation of presynaptic vesicle pools. Lastly, by coupling expression of pHTomato- and GFP-based probes with distinct variants of channelrhodopsin, we provided proof-of-principle for an all-optical approach to multiplex control and tracking of distinct circuit pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pHTomato spectra and properties.
Figure 2: Dual-color simultaneous imaging of vesicle fusion and cytosolic Ca2+.
Figure 3: Dual-color imaging of synaptic connection by sypHTomato and GCaMP3.
Figure 4: Dynamic imaging of synaptic transmission in suprathreshold or subthreshold condition by presynaptic sypHTomato and postsynaptic GCaMP3.
Figure 5: Proof of principle for an all-optical control and readout system.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Siegel, M.S. & Isacoff, E.Y. A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741 (1997).

    Article  CAS  Google Scholar 

  2. Mutoh, H., Perron, A., Akemann, W., Iwamoto, Y. & Knopfel, T. Optogenetic monitoring of membrane potentials. Exp. Physiol. 96, 13–18 (2011).

    Article  Google Scholar 

  3. Miyawaki, A. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu. Rev. Biochem. 2011, 357–373 (2011).

    Article  Google Scholar 

  4. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  5. Kuner, T. & Augustine, G.J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).

    Article  CAS  Google Scholar 

  6. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  Google Scholar 

  7. Miesenböck, G. & Kevrekidis, I.G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  Google Scholar 

  8. Chow, B.Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  Google Scholar 

  9. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  Google Scholar 

  10. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  11. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  12. Kremers, G.J., Hazelwood, K.L., Murphy, C.S., Davidson, M.W. & Piston, D.W. Photoconversion in orange and red fluorescent proteins. Nat. Methods 6, 355–358 (2009).

    Article  CAS  Google Scholar 

  13. Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741–746 (2007).

    Article  CAS  Google Scholar 

  14. Sankaranarayanan, S., De Angelis, D., Rothman, J.E. & Ryan, T.A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).

    Article  CAS  Google Scholar 

  15. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  16. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  17. Jach, G., Pesch, M., Richter, K., Frings, S. & Uhrig, J.F. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat. Methods 3, 597–600 (2006).

    Article  CAS  Google Scholar 

  18. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  Google Scholar 

  19. Zhu, Y., Xu, J. & Heinemann, S.F. Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61, 397–411 (2009).

    Article  CAS  Google Scholar 

  20. Li, H. et al. Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front. Mol. Neurosci. 4, 34 (2011).

    Article  Google Scholar 

  21. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  22. Boron, W.F. & De Weer, P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol. 67, 91–112 (1976).

    Article  CAS  Google Scholar 

  23. Reuter, H. Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca2+-channel blockers. Neuron 14, 773–779 (1995).

    Article  CAS  Google Scholar 

  24. Reid, C.A., Clements, J.D. & Bekkers, J.M. Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J. Neurosci. 17, 2738–2745 (1997).

    Article  CAS  Google Scholar 

  25. Murthy, V.N. & Stevens, C.F. Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci. 2, 503–507 (1999).

    Article  CAS  Google Scholar 

  26. Pierce, J.P. & Lewin, G.R. An ultrastructural size principle. Neuroscience 58, 441–446 (1994).

    Article  CAS  Google Scholar 

  27. Harris, K.M. & Stevens, J.K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  28. Branco, T., Staras, K., Darcy, K.J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

    Article  CAS  Google Scholar 

  29. Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).

    Article  CAS  Google Scholar 

  30. Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121–134 (2012).

    Article  CAS  Google Scholar 

  31. Johnson, D.E. et al. Red fluorescent protein pH biosensor to detect concentrative nucleoside transport. J. Biol. Chem. 284, 20499–20511 (2009).

    Article  CAS  Google Scholar 

  32. Tantama, M., Hung, Y.P. & Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J. Am. Chem. Soc. 133, 10034–10037 (2011).

    Article  CAS  Google Scholar 

  33. Micheva, K.D., Buchanan, J., Holz, R.W. & Smith, S.J. Retrograde regulation of synaptic vesicle endocytosis and recycling. Nat. Neurosci. 6, 925–932 (2003).

    Article  CAS  Google Scholar 

  34. Auld, D.S. & Robitaille, R. Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40, 389–400 (2003).

    Article  CAS  Google Scholar 

  35. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  36. Rickgauer, J.P. & Tank, D.W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl. Acad. Sci. USA 106, 15025–15030 (2009).

    Article  CAS  Google Scholar 

  37. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  38. Zhang, Q., Li, Y. & Tsien, R.W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  Google Scholar 

  39. Kao, J.P., Harootunian, A.T. & Tsien, R.Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J. Biol. Chem. 264, 8179–8184 (1989).

    CAS  PubMed  Google Scholar 

  40. Maravall, M., Mainen, Z.F., Sabatini, B.L. & Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lin for help with quantum yield measurements. We thank J. Emery for technical assistance and L. Li for help with transfections. We thank L. Luo and Tsien laboratory members, especially M. Tadross, S. Owen, H. Park and R. Groth, for discussions throughout the execution of this project. This work was supported by grants from the US National Institute of Neurological Disorders and Stroke (NS074785 and NS24067), the US National Institute of Mental Health (MH064070), the Mathers Foundation and the Burnett family fund (to R.W.T.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived and performed the experiments. R.W.T. supervised the project. Y.L. and R.W.T. wrote the manuscript.

Corresponding authors

Correspondence to Yulong Li or Richard W Tsien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Tsien, R. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15, 1047–1053 (2012). https://doi.org/10.1038/nn.3126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing