Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of adult-born neurons facilitates learning and memory

Abstract

Thousand of local interneurons reach the olfactory bulb of adult rodents every day, but the functional effect of this process remains elusive. By selectively expressing channelrhodopsin in postnatal-born mouse neurons, we found that their activation accelerated difficult odor discrimination learning and improved memory. This amelioration was seen when photoactivation occurred simultaneously with odor presentation, but not when odor delivery lagged by 500 ms. In addition, learning was facilitated when light flashes were delivered at 40 Hz, but not at 10 Hz. Both in vitro and in vivo electrophysiological recordings of mitral cells revealed that 40-Hz stimuli produced enhanced GABAergic inhibition compared with 10-Hz stimulation. Facilitation of learning occurred specifically when photoactivated neurons were generated during adulthood. Taken together, our results demonstrate an immediate causal relationship between the activity of adult-born neurons and the function of the olfactory bulb circuit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light-induced activation of adult-born neurons.
Figure 2: Olfactory discrimination learning.
Figure 3: Stimulation of adult-born neurons accelerates learning.
Figure 4: Light-induced responses in granule and mitral cells in vitro.
Figure 5: Light-activation of ChR2-positive adult-born neurons control spontaneous and odor-evoked mitral cell firing activity in the awake mouse.
Figure 6: Light stimulation of postnatal-born neurons does not modify odor discrimination learning.

Similar content being viewed by others

References

  1. Breton-Provencher, V., Lemasson, M., Peralta, M.R. & Saghatelyan, A. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J. Neurosci. 29, 15245–15257 (2009).

    Article  CAS  Google Scholar 

  2. Moreno, M.M. et al. Olfactory perceptual learning requires adult neurogenesis. Proc. Natl. Acad. Sci. USA 106, 17980–17985 (2009).

    Article  CAS  Google Scholar 

  3. Rochefort, C., Gheusi, G., Vincent, J.D. & Lledo, P.M. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  Google Scholar 

  4. Lazarini, F. et al. Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice. PLoS ONE 4, e7017 (2009).

    Article  Google Scholar 

  5. Sultan, S. et al. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J. 24, 2355–2363 (2010).

    Article  CAS  Google Scholar 

  6. Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004).

    Article  CAS  Google Scholar 

  7. Mandairon, N. et al. Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur. J. Neurosci. 24, 3578–3588 (2006).

    Article  Google Scholar 

  8. Alonso, M. et al. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J. Neurosci. 26, 10508–10513 (2006).

    Article  CAS  Google Scholar 

  9. Mouret, A., Lepousez, G., Gras, J., Gabellec, M.M. & Lledo, P.M. Turnover of newborn olfactory bulb neurons optimizes olfaction. J. Neurosci. 29, 12302–12314 (2009).

    Article  CAS  Google Scholar 

  10. Sakamoto, M. et al. Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc. Natl. Acad. Sci. USA 108, 8479–8484 (2011).

    Article  CAS  Google Scholar 

  11. Valley, M.T., Mullen, T.R., Schultz, L.C., Sagdullaev, B.T. & Firestein, S. Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning. Front. Neurosci. 3, 51 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92, 3371–3375 (1995).

    Article  CAS  Google Scholar 

  13. Lledo, P.M. & Lagier, S. Adjusting neurophysiological computations in the adult olfactory bulb. Semin. Cell Dev. Biol. 17, 443–453 (2006).

    Article  Google Scholar 

  14. Cleland, T.A. Early transformations in odor representation. Trends Neurosci. 33, 130–139 (2010).

    Article  CAS  Google Scholar 

  15. Shepherd, G.M., Chen, W.R., Willhite, D., Migliore, M. & Greer, C.A. The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res. Rev. 55, 373–382 (2007).

    Article  Google Scholar 

  16. Matsutani, S. & Yamamoto, N. Centrifugal innervation of the mammalian olfactory bulb. Anat. Sci. Int. 83, 218–227 (2008).

    Article  Google Scholar 

  17. Mouret, A., Murray, K. & Lledo, P.M. Centrifugal drive onto local inhibitory interneurons of the olfactory bulb. Ann. NY Acad. Sci. 1170, 239–254 (2009).

    Article  CAS  Google Scholar 

  18. Abraham, N.M. et al. Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876 (2004).

    CAS  Google Scholar 

  19. Abraham, N.M. et al. Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice. Neuron 65, 399–411 (2010).

    Article  CAS  Google Scholar 

  20. Murthy, V.N. Olfactory maps in the brain. Annu. Rev. Neurosci. 34, 233–258 (2011).

    Article  CAS  Google Scholar 

  21. Lazarini, F. & Lledo, P.M. Is adult neurogenesis essential for olfaction? Trends Neurosci. 34, 20–30 (2011).

    Article  CAS  Google Scholar 

  22. Bardy, C., Alonso, M., Bouthour, W. & Lledo, P.M. How, when, and where new inhibitory neurons release neurotransmitters in the adult olfactory bulb. J. Neurosci. 30, 17023–17034 (2010).

    Article  CAS  Google Scholar 

  23. Tan, J., Savigner, A., Ma, M. & Luo, M. Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 65, 912–926 (2010).

    Article  CAS  Google Scholar 

  24. Cang, J. & Isaacson, J.S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23, 4108–4116 (2003).

    Article  CAS  Google Scholar 

  25. Isaacson, J.S. & Strowbridge, B.W. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20, 749–761 (1998).

    Article  CAS  Google Scholar 

  26. Dietz, S.B. & Murthy, V.N. Contrasting short-term plasticity at two sides of the mitral-granule reciprocal synapse in the mammalian olfactory bulb. J. Physiol. (Lond.) 569, 475–488 (2005).

    Article  CAS  Google Scholar 

  27. Rinberg, D., Koulakov, A. & Gelperin, A. Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865 (2006).

    Article  CAS  Google Scholar 

  28. Gheusi, G. et al. Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc. Natl. Acad. Sci. USA 97, 1823–1828 (2000).

    Article  CAS  Google Scholar 

  29. Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11, 1153–1161 (2008).

    Article  CAS  Google Scholar 

  30. Linster, C. et al. Perceptual correlates of neural representations evoked by odorant enantiomers. J. Neurosci. 21, 9837–9843 (2001).

    Article  CAS  Google Scholar 

  31. Dhawale, A.K., Hagiwara, A., Bhalla, U.S., Murthy, V.N. & Albeanu, D.F. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat. Neurosci. 13, 1404–1412 (2010).

    Article  CAS  Google Scholar 

  32. Stopfer, M., Bhagavan, S., Smith, B.H. & Laurent, G. Impaired odor discrimination on desynchronization of odor-encoding neural assemblies. Nature 390, 70–74 (1997).

    Article  CAS  Google Scholar 

  33. Mwilaria, E.K., Ghatak, C. & Daly, K.C. Disruption of GABAA in the insect antennal lobe generally increases odor detection and discrimination thresholds. Chem. Senses 33, 267–281 (2008).

    Article  CAS  Google Scholar 

  34. Kay, L.M. & Stopfer, M. Information processing in the olfactory systems of insects and vertebrates. Semin. Cell Dev. Biol. 17, 433–442 (2006).

    Article  Google Scholar 

  35. Doucette, W. & Restrepo, D. Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol. 6, e258 (2008).

    Article  Google Scholar 

  36. Doucette, W. et al. Associative cortex features in the first olfactory brain relay station. Neuron 69, 1176–1187 (2011).

    Article  CAS  Google Scholar 

  37. Chapuis, J. & Wilson, D.A. Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat. Neurosci. 15, 155–161 (2012).

    Article  CAS  Google Scholar 

  38. Uchida, N. & Mainen, Z.F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    Article  CAS  Google Scholar 

  39. Rinberg, D., Koulakov, A. & Gelperin, A. Speed-accuracy tradeoff in olfaction. Neuron 51, 351–358 (2006).

    Article  CAS  Google Scholar 

  40. Nissant, A., Bardy, C., Katagiri, H., Murray, K. & Lledo, P.M. Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat. Neurosci. 12, 728–730 (2009).

    Article  CAS  Google Scholar 

  41. Mandairon, N. & Linster, C. Odor perception and olfactory bulb plasticity in adult mammals. J. Neurophysiol. 101, 2204–2209 (2009).

    Article  Google Scholar 

  42. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895 (2002).

    Article  CAS  Google Scholar 

  43. Franks, K.M. & Isaacson, J.S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363 (2006).

    Article  CAS  Google Scholar 

  44. Mouret, A. et al. Learning and survival of newly generated neurons: when time matters. J. Neurosci. 28, 11511–11516 (2008).

    Article  CAS  Google Scholar 

  45. Wilson, D.A. & Stevenson, R.J. Olfactory perceptual learning: the critical role of memory in odor discrimination. Neurosci. Biobehav. Rev. 27, 307–328 (2003).

    Article  Google Scholar 

  46. Mandairon, N., Stack, C., Kiselycznyk, C. & Linster, C. Broad activation of the olfactory bulb produces long-lasting changes in odor perception. Proc. Natl. Acad. Sci. USA 103, 13543–13548 (2006).

    Article  CAS  Google Scholar 

  47. Koulakov, A.A. & Rinberg, D. Sparse incomplete representations: a potential role of olfactory granule cells. Neuron 72, 124–136 (2011).

    Article  CAS  Google Scholar 

  48. Sahay, A., Wilson, D.A. & Hen, R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70, 582–588 (2011).

    Article  CAS  Google Scholar 

  49. Lepousez, G., Alonso, M., Wagner, S., Gallarda, B.W. & Lledo, P.-M. Selective viral transduction of adult-born olfactory neurons for chronic in vivo optogenetic stimulation. J. Vis. Exp. published online, doi:10.3791/3380 (28 December 2011).

  50. Alonso, M. et al. Turning astrocytes from the rostral migratory stream into neurons: a role for the olfactory sensory organ. J. Neurosci. 28, 11089–11102 (2008).

    Article  CAS  Google Scholar 

  51. Neville, K.R. & Haberly, L.B. Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J. Neurophysiol. 90, 3921–3930 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Gheusi for his advice regarding the use of olfactometers, L. Petreanu for the manipulation of the LEDs during behavioral experiments, K. Murray and N. Maffey for technical assistance, and M. Valley and G. Gheusi for their critical reading of the manuscript. We thank the ENP Network for Viral Transfer for viral vector production. This work was supported by NovalisTaitbout, the Letten Foundation, the Foundation pour la Recherche Medical, the Agence Nationale de la Recherche (ANR-BLAN-SVSE4-LS-110624 and ANR-09-NEUR-004 in the frame of “ERA-NET NEURON” of FP7 program by the European Commission).

Author information

Authors and Affiliations

Authors

Contributions

M.A. and P.-M.L. designed the experiments, discussed the results and wrote the manuscript. M.A. performed surgery, behavioral experiments and analyzed data. G.L. designed, performed and analyzed in vivo electrophysiology recordings. S.W. design olfactomers and light-stimulation devices. C.B. performed and analyzed in vitro electrophysiology recordings. M.-M.G. performed immunohistochemistry and N.T. designed the database for behavioral analysis.

Corresponding author

Correspondence to Pierre-Marie Lledo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 4213 kb)

Supplementary Video 1

Photostimulation of adult-born neurons during olfactory discrimination learning. (AVI 10250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, M., Lepousez, G., Wagner, S. et al. Activation of adult-born neurons facilitates learning and memory. Nat Neurosci 15, 897–904 (2012). https://doi.org/10.1038/nn.3108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing