Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex

Abstract

The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DMC task.
Figure 2: Examples of category-selective LIP and PFC neurons.
Figure 3: Strength of category selectivity across LIP and PFC populations.
Figure 4: Time course of LIP and PFC category selectivity.
Figure 5: Neuronal activity to on-boundary directions with ambiguous category membership.

Similar content being viewed by others

References

  1. Wyttenbach, R.A., May, M.L. & Hoy, R.R. Categorical perception of sound frequency by crickets. Science 273, 1542–1544 (1996).

    Article  CAS  Google Scholar 

  2. Roberts, W.A. & Mazmanian, D.S. Concept learning at different levels of abstraction by pigeons, monkeys and people. J. Exp. Psychol. Anim. Behav. Process. 14, 247–260 (1988).

    Article  Google Scholar 

  3. Vogels, R. Categorization of complex visual images by rhesus monkeys. Eur. J. Neurosci. 11, 1223–1238 (1999).

    Article  CAS  Google Scholar 

  4. Fabre-Thorpe, M., Richard, G. & Thorpe, S.J. Rapid categorization of natural images by rhesus monkeys. Neuroreport 9, 303–308 (1998).

    Article  CAS  Google Scholar 

  5. Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  Google Scholar 

  6. Ashby, F.G. & Maddox, W.T. Human category learning. Annu. Rev. Psychol. 56, 149–178 (2005).

    Article  Google Scholar 

  7. Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23, 5235–5246 (2003).

    Article  CAS  Google Scholar 

  8. Ferrera, V.P., Yanike, M. & Cassanello, C. Frontal eye field neurons signal changes in decision criteria. Nat. Neurosci. 12, 1458–1462 (2009).

    Article  CAS  Google Scholar 

  9. Wallis, J.D., Anderson, K.C. & Miller, E.K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    Article  CAS  Google Scholar 

  10. Freedman, D.J. & Assad, J.A. Experience-dependent representation of visual categories in parietal cortex. Nature 443, 85–88 (2006).

    Article  CAS  Google Scholar 

  11. Fitzgerald, J.K., Freedman, D.J. & Assad, J.A. Generalized associative representations in parietal cortex. Nat. Neurosci. 14, 1075–1079 (2011).

    Article  CAS  Google Scholar 

  12. Stoet, G. & Snyder, L.H. Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron 42, 1003–1012 (2004).

    Article  CAS  Google Scholar 

  13. Born, R.T. & Bradley, D.C. Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005).

    Article  CAS  Google Scholar 

  14. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  15. Jiang, X. et al. Categorization training results in shape- and category-selective human neural plasticity. Neuron 53, 891–903 (2007).

    Article  CAS  Google Scholar 

  16. Shadlen, M.N., Kiani, R., Hanks, T.D. & Churchland, A.K. Neurobiology of decision making: an intentional framework. in Better Than Conscious? Decision Making, the Human Mind, and Implications for Institutions (eds. Engel, C. & Singer, W.) 71–102 (MIT Press, Cambridge, Massachusetts, 2008).

  17. Freedman, D.J. & Assad, J.A. Distinct encoding of spatial and nonspatial visual information in parietal cortex. J. Neurosci. 29, 5671–5680 (2009).

    Article  CAS  Google Scholar 

  18. Ferrera, V.P. & Grinband, J. Walk the line: parietal neurons respect category boundaries. Nat. Neurosci. 9, 1207–1208 (2006).

    Article  CAS  Google Scholar 

  19. Williams, Z.M., Elfar, J.C., Eskandar, E.N., Toth, L.J. & Assad, J.A. Parietal activity and the perceived direction of ambiguous apparent motion. Nat. Neurosci. 6, 616–623 (2003).

    Article  CAS  Google Scholar 

  20. Cook, E.P. & Maunsell, J.H. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22, 1994–2004 (2002).

    Article  CAS  Google Scholar 

  21. Nieder, A., Diester, I. & Tudusciuc, O. Temporal and spatial enumeration processes in the primate parietal cortex. Science 313, 1431–1435 (2006).

    Article  CAS  Google Scholar 

  22. Merchant, H., Crowe, D.A., Robertson, M.S., Fortes, A.F. & Georgopoulos, A.P. Top-down spatial categorization signal from prefrontal to posterior parietal cortex in the primate. Front. Syst. Neurosci. 5, 69 (2011).

    Article  Google Scholar 

  23. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  24. Roy, J.E., Riesenhuber, M., Poggio, T. & Miller, E.K. Prefrontal cortex activity during flexible categorization. J. Neurosci. 30, 8519–8528 (2010).

    Article  CAS  Google Scholar 

  25. Bisley, J.W. & Goldberg, M.E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).

    Article  CAS  Google Scholar 

  26. Snyder, L.H., Batista, A.P. & Andersen, R.A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    Article  CAS  Google Scholar 

  27. Gottlieb, J. & Snyder, L.H. Spatial and non-spatial functions of the parietal cortex. Curr. Opin. Neurobiol. 20, 731–740 (2010).

    Article  CAS  Google Scholar 

  28. Oristaglio, J., Schneider, D.M., Balan, P.F. & Gottlieb, J. Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area. J. Neurosci. 26, 8310–8319 (2006).

    Article  CAS  Google Scholar 

  29. Freedman, D.J. & Assad, J.A. A proposed common neural mechanisms for categorization and perceptual decisions. Nat. Neurosci. 14, 143–146 (2011).

    Article  CAS  Google Scholar 

  30. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  31. Bennur, S. & Gold, J.I. Distinct representations of a perceptual decision and the associated oculomotor plan in the monkey lateral intraparietal area. J. Neurosci. 31, 913–921 (2011).

    Article  CAS  Google Scholar 

  32. Asaad, W.F. & Eskandar, E.N. A flexible software tool for temporally-precise behavioral control in Matlab. J. Neurosci. Methods 174, 245–258 (2008).

    Article  Google Scholar 

  33. Asaad, W.F., Rainer, G. & Miller, E.K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    Article  CAS  Google Scholar 

  34. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (J. Wiley & Sons, New York, 1966).

  35. Tolhurst, D.J., Movshon, J.A. & Dean, A.F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. McClellan for animal training and technical assistance, G. Huang, C. Rishel and S. Thomas for technical assistance, and the staff of The University of Chicago Animal Resources Center for expert veterinary assistance. We also thank J. Assad, J. Fitzgerald, T. Herrington, G. Ibos, J. McKee, E. Miller, C. Pack, M. Riesenhuber and A. Sarma for helpful discussions and/or comments on an earlier version of this manuscript. This work was supported by US National Institutes of Health grant R01 EY019041. Additional support was provided by a National Science Foundation Faculty Early Career Development Award, the Alfred P. Sloan Foundation, the Brain Research Foundation and US National Institutes of Health Training Grant 5T32GM007839.

Author information

Authors and Affiliations

Authors

Contributions

D.J.F. and S.K.S. designed the experiments, analyzed the data and wrote the manuscript. S.K.S. trained the monkeys and performed all neurophysiological recordings. D.J.F. assisted in monkey training and neurophysiological recordings.

Corresponding author

Correspondence to David J Freedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Note (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, S., Freedman, D. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat Neurosci 15, 315–320 (2012). https://doi.org/10.1038/nn.3016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing