Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin modification of Notch targets in olfactory receptor neuron diversification

Abstract

Neuronal-class diversification is central during neurogenesis. This requirement is exemplified in the olfactory system, which utilizes a large array of olfactory receptor neuron (ORN) classes. We discovered an epigenetic mechanism in which neuron diversity is maximized via locus-specific chromatin modifications that generate context-dependent responses from a single, generally used intracellular signal. Each ORN in Drosophila acquires one of three basic identities defined by the compound outcome of three iterated Notch signaling events during neurogenesis. Hamlet, the Drosophila Evi1 and Prdm16 proto-oncogene homolog, modifies cellular responses to these iteratively used Notch signals in a context-dependent manner, and controls odorant receptor gene choice and ORN axon targeting specificity. In nascent ORNs, Hamlet erases the Notch state inherited from the parental cell, enabling a modified response in a subsequent round of Notch signaling. Hamlet directs locus-specific modifications of histone methylation and histone density and controls accessibility of the DNA-binding protein Suppressor of Hairless at the Notch target promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential Notch signaling and Ham and Svp expression delineates ORN identity.
Figure 2: Naa, Nab and Nba identities in the ORN lineage.
Figure 3: ham mutant ORNs switch axonal projection identities.
Figure 4: Ham acts as a switch between Nab and Nba odorant receptor expression identity.
Figure 5: Modification of Notch activity by a Ham-CtBP complex.
Figure 6: Ham drives chromatin modification at Notch-target loci.
Figure 7: Ham controls ORN lineage Notch target dynamics.

Similar content being viewed by others

References

  1. Stevens, C.F. Neuronal diversity: too many cell types for comfort? Curr. Biol. 8, R708–R710 (1998).

    Article  CAS  Google Scholar 

  2. Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    Article  CAS  Google Scholar 

  3. Couto, A., Alenius, M. & Dickson, B.J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    Article  CAS  Google Scholar 

  4. Fishilevich, E. & Vosshall, L.B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005).

    Article  CAS  Google Scholar 

  5. Mori, K. & Sakano, H. How is the olfactory map formed and interpreted in the mammalian brain? Annu. Rev. Neurosci. 34, 467–499 (2011).

    Article  CAS  Google Scholar 

  6. Louvi, A. & Artavanis-Tsakonas, S. Notch signaling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    Article  CAS  Google Scholar 

  7. Pires-daSilva, A. & Sommer, R.J. The evolution of signaling pathways in animal development. Nat. Rev. Genet. 4, 39–49 (2003).

    Article  CAS  Google Scholar 

  8. Endo, K., Aoki, T., Yoda, Y., Kimura, K. & Hama, C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat. Neurosci. 10, 153–160 (2007).

    Article  CAS  Google Scholar 

  9. Bray, S. & Bernard, F. Notch targets and their regulation. Curr. Top. Dev. Biol. 92, 253–275 (2010).

    Article  CAS  Google Scholar 

  10. Cooper, M.T. et al. Spatially restricted factors cooperate with Notch in the regulation of Enhancer of split genes. Dev. Biol. 221, 390–403 (2000).

    Article  CAS  Google Scholar 

  11. Kramatschek, B. & Campos-Ortega, J.A. Neuroectodermal transcription of the Drosophila neurogenic genes E(spl) and HLH-m5 is regulated by proneural genes. Development 120, 815–826 (1994).

    CAS  PubMed  Google Scholar 

  12. Swanson, C.I., Evans, N.C. & Barolo, S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev. Cell 18, 359–370 (2010).

    Article  CAS  Google Scholar 

  13. Kinameri, E. et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS ONE 3, e3859 (2008).

    Article  Google Scholar 

  14. Moore, A.W., Jan, L.Y. & Jan, Y.N. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology. Science 297, 1355–1358 (2002).

    Article  CAS  Google Scholar 

  15. Moore, A.W., Roegiers, F., Jan, L.Y. & Jan, Y.N. Conversion of neurons and glia to external cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification. Genes Dev. 18, 623–628 (2004).

    Article  CAS  Google Scholar 

  16. Lu, B., Rothenberg, M., Jan, L.Y. & Jan, Y.N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 (1998).

    Article  CAS  Google Scholar 

  17. Hayashi, S. et al. GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34, 58–61 (2002).

    Article  CAS  Google Scholar 

  18. Andrews, H.K., Giagtzoglou, N., Yamamoto, S., Schulze, K.L. & Bellen, H.J. Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila. EMBO Rep. 10, 636–641 (2009).

    Article  CAS  Google Scholar 

  19. Wang, S., Younger-Shepherd, S., Jan, L.Y. & Jan, Y.N. Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless. Development 124, 4435–4446 (1997).

    CAS  PubMed  Google Scholar 

  20. Abdelilah-Seyfried, S. et al. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics 155, 733–752 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008).

    Article  CAS  Google Scholar 

  22. Izutsu, K. et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97, 2815–2822 (2001).

    Article  CAS  Google Scholar 

  23. Palmer, S. et al. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J. Biol. Chem. 276, 25834–25840 (2001).

    Article  CAS  Google Scholar 

  24. Rand, M.D. et al. Calcium depletion dissociates and activates heterodimeric Notch receptors. Mol. Cell. Biol. 20, 1825–1835 (2000).

    Article  CAS  Google Scholar 

  25. Krejcí, A. & Bray, S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21, 1322–1327 (2007).

    Article  Google Scholar 

  26. Mukherjee, A. et al. Regulation of Notch signaling by non-visual beta-arrestin. Nat. Cell Biol. 7, 1191–1201 (2005).

    Article  Google Scholar 

  27. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article  CAS  Google Scholar 

  28. Völkel, P. & Angrand, P.O. The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1–20 (2007).

    Article  Google Scholar 

  29. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003).

    Article  CAS  Google Scholar 

  30. Chinnadurai, G. Transcriptional regulation by C-terminal binding proteins. Int. J. Biochem. Cell Biol. 39, 1593–1607 (2007).

    Article  CAS  Google Scholar 

  31. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  Google Scholar 

  32. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  Google Scholar 

  33. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6, 73–77 (2004).

    Article  CAS  Google Scholar 

  34. Suh, G.S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behavior in Drosophila. Nature 431, 854–859 (2004).

    Article  CAS  Google Scholar 

  35. Kurtovic, A., Widmer, A. & Dickson, B.J. A single class of olfactory neurons mediates behavioral responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007).

    Article  CAS  Google Scholar 

  36. Ray, A., van Naters, W.G., Shiraiwa, T. & Carlson, J.R. Mechanisms of odor receptor gene choice in Drosophila. Neuron 53, 353–369 (2007).

    Article  CAS  Google Scholar 

  37. Bai, L., Goldman, A.L. & Carlson, J.R. Positive and negative regulation of odor receptor gene choice in Drosophila by Acj6. J. Neurosci. 29, 12940–12947 (2009).

    Article  CAS  Google Scholar 

  38. Tichy, A.L., Ray, A. & Carlson, J.R. A new Drosophila POU gene, pdm3, acts in odor receptor expression and axon targeting of olfactory neurons. J. Neurosci. 28, 7121–7129 (2008).

    Article  CAS  Google Scholar 

  39. Komiyama, T., Carlson, J.R. & Luo, L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nat. Neurosci. 7, 819–825 (2004).

    Article  CAS  Google Scholar 

  40. Chou, Y.H., Zheng, X., Beachy, P.A. & Luo, L. Patterning axon targeting of olfactory receptor neurons by coupled hedgehog signaling at two distinct steps. Cell 142, 954–966 (2010).

    Article  CAS  Google Scholar 

  41. Gupta, B.P. & Rodrigues, V. atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells 2, 225–233 (1997).

    Article  CAS  Google Scholar 

  42. Bray, S. & Furriols, M. Notch pathway: making sense of suppressor of hairless. Curr. Biol. 11, R217–R221 (2001).

    Article  CAS  Google Scholar 

  43. Pierfelice, T.J., Schreck, K.C., Eberhart, C.G. & Gaiano, N. Notch, neural stem cells, and brain tumors. Cold Spring Harb. Symp. Quant. Biol. 73, 367–375 (2008).

    Article  CAS  Google Scholar 

  44. He, S., Nakada, D. & Morrison, S.J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25, 377–406 (2009).

    Article  CAS  Google Scholar 

  45. Lim, D.A. et al. Chromatin remodeling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    Article  CAS  Google Scholar 

  46. Magklara, A. et al. An epigenetic signature for monoallelic olfactory receptor expression. Cell 145, 555–570 (2011).

    Article  CAS  Google Scholar 

  47. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  Google Scholar 

  48. Kanai, M.I., Okabe, M. & Hiromi, Y. seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev. Cell 8, 203–213 (2005).

    Article  CAS  Google Scholar 

  49. Matsuzaki, F., Koizumi, K., Hama, C., Yoshioka, T. & Nabeshima, Y. Cloning of the Drosophila prospero gene and its expression in ganglion mother cells. Biochem. Biophys. Res. Commun. 182, 1326–1332 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Luo, T. Hummel, Y. Hiromi, Y.N. Jan, F. Matsuzaki, S. Parkhurst, the Bloomington Drosophila Stock Center, Bloomington Drosophila Genomics Resource Center, the Iowa Developmental Studies Hybridoma Bank and Flybase for Drosophila stocks, DNA clones, antibodies and indispensable database information, and C. Yokoyama and members of the Moore laboratory for advice on the manuscript. Funding was provided by Japan Society for the Promotion of Science Grants-in-Aid Young Scientists (B) to H.T. and Scientific Research (C) to K.E., a RIKEN–Deutscher Akademischer Austauschdienst Research Internship Scholarship to M.S., a Medical Research Council program grant to S.J.B., and a RIKEN Brain Science Institute core award to A.W.M.

Author information

Authors and Affiliations

Authors

Contributions

K.E., M.R.K., E.K., M.S., S.J.B. and A.W.M. carried out genetic analyses. H.T., A.K., E.K. and M.S. carried out molecular biology. K.E., K.I., S.J.B. and A.W.M. wrote the paper. A.W.M. conceived and coordinated the study.

Corresponding author

Correspondence to Adrian W Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, K., Karim, M., Taniguchi, H. et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat Neurosci 15, 224–233 (2012). https://doi.org/10.1038/nn.2998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing