Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation

Abstract

Emotionally important events are well remembered. Although memories of emotional experiences are known to be mediated and modulated by stress hormones such as glucocorticoids, little is known about the underlying molecular mechanisms. We found that the hippocampal glucocorticoid receptors that are critically engaged during the formation of long-term inhibitory avoidance memory in rats were coupled to the activation of CaMKIIα, TrkB, ERK, Akt, PLCγ and CREB, as well as a to a substantial induction of Arc and synaptic GluA1. Most of these changes, which are initiated by a nongenomic effect of glucocorticoid receptors, were also downstream of the activation of brain-derived neurotrophic factor (BDNF). Hippocampal administration of BDNF, but not of other neurotrophins, selectively rescued both the amnesia and the molecular impairments produced by glucocorticoid receptor inhibition. Thus, glucocorticoid receptors mediate long-term memory formation by recruiting the CaMKIIα-BDNF-CREB–dependent neural plasticity pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hippocampal glucocorticoid receptor activation is required for long-term, but not short-term, inhibitory avoidance memory.
Figure 2: Molecular pathways coupled to hippocampal glucocorticoid receptors following inhibitory avoidance training.
Figure 3: Hippocampal BDNF is required for long-term, but not short-term, inhibitory avoidance memory.
Figure 4: Molecular pathways coupled to BDNF following inhibitory avoidance training.
Figure 5: BDNF selectively rescues the RU486-mediated amnesia.
Figure 6: BDNF rescues the RU486-mediated molecular disruption.

Similar content being viewed by others

References

  1. McGaugh, J.L. Memory and Emotion: The Making of Lasting Memory (Weidenfeld and Nicolson, 2003).

  2. De Kloet, E.R. Hormones and the stressed brain. Ann. NY Acad. Sci. 1018, 1–15 (2004).

    Article  CAS  Google Scholar 

  3. McEwen, B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  Google Scholar 

  4. Sapolsky, R.M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925–935 (2000).

    Article  CAS  Google Scholar 

  5. Roozendaal, B. 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 25, 213–238 (2000).

    Article  CAS  Google Scholar 

  6. Dudai, Y. Molecular bases of long-term memories: a question of persistence. Curr. Opin. Neurobiol. 12, 211–216 (2002).

    Article  CAS  Google Scholar 

  7. Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K. & Kawata, M. Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci. Res. 26, 235–269 (1996).

    Article  CAS  Google Scholar 

  8. McEwen, B.S., Eiland, L., Hunter, R.G. & Miller, M.M. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62, 3–12 (2012).

    Article  CAS  Google Scholar 

  9. Revest, J.M. et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nat. Neurosci. 8, 664–672 (2005).

    Article  CAS  Google Scholar 

  10. Revest, J.M. et al. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol. Psychiatry 15, 1140–1151 (2010).

    Article  CAS  Google Scholar 

  11. Brogden, R.N., Goa, K.L. & Faulds, D. Mifepristone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 45, 384–409 (1993).

    Article  CAS  Google Scholar 

  12. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  13. Minichiello, L. TrkB signaling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850–860 (2009).

    Article  CAS  Google Scholar 

  14. Sindreu, C.B., Scheiner, Z.S. & Storm, D.R. Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53, 79–89 (2007).

    Article  CAS  Google Scholar 

  15. Hosaka, M., Hammer, R.E. & Sudhof, T.C. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24, 377–387 (1999).

    Article  CAS  Google Scholar 

  16. Alberini, C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).

    Article  CAS  Google Scholar 

  17. Bramham, C.R., Worley, P.F., Moore, M.J. & Guzowski, J.F. The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J. Neurosci. 28, 11760–11767 (2008).

    Article  CAS  Google Scholar 

  18. Taubenfeld, S.M., Wiig, K.A., Bear, M.F. & Alberini, C.M. A molecular correlate of memory and amnesia in the hippocampus. Nat. Neurosci. 2, 309–310 (1999).

    Article  CAS  Google Scholar 

  19. Impey, S. et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601 (1998).

    Article  CAS  Google Scholar 

  20. Arthur, J.S. et al. Mitogen- and stress-activated protein kinase 1 mediates cAMP response element–binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 24, 4324–4332 (2004).

    Article  CAS  Google Scholar 

  21. McGuinness, T.L. et al. Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm. J. Neurosci. 9, 4138–4149 (1989).

    Article  CAS  Google Scholar 

  22. Pevzner, A., Miyashita, T., Schiffman, A.J. & Guzowski, J.F. Temporal dynamics of Arc gene induction in hippocampus: relationship to context memory formation. Neurobiol. Learn. Mem. 97, 313–320 (2012).

    Article  CAS  Google Scholar 

  23. Fanselow, M.S., DeCola, J.P. & Young, S.L. Mechanisms responsible for reduced contextual conditioning with massed unsignaled unconditional stimuli. J. Exp. Psychol. Anim. Behav. Process. 19, 121–137 (1993).

    Article  CAS  Google Scholar 

  24. Garcia-Osta, A. et al. MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity and memory formation. J. Neurosci. 26, 7919–7932 (2006).

    Article  CAS  Google Scholar 

  25. Chen, D.Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 (2011).

    Article  CAS  Google Scholar 

  26. Lee, J.L., Everitt, B.J. & Thomas, K.L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004).

    Article  CAS  Google Scholar 

  27. Bekinschtein, P., Cammarota, M., Izquierdo, I. & Medina, J.H. BDNF and memory formation and storage. Neuroscientist 14, 147–156 (2008).

    Article  CAS  Google Scholar 

  28. Cahill, L., Prins, B., Weber, M. & McGaugh, J.L. Beta-adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994).

    Article  CAS  Google Scholar 

  29. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    Article  CAS  Google Scholar 

  30. Duncan, G.E. et al. Beta-adrenergic receptor distribution in human and rat hippocampal formation: marked species differences. Brain Res. 561, 84–92 (1991).

    Article  CAS  Google Scholar 

  31. Black, J.W., Crowther, A.F., Shanks, R.G., Smith, L.H. & Dornhorst, A.C. A new adrenergic betareceptor antagonist. Lancet 1, 1080–1081 (1964).

    Article  CAS  Google Scholar 

  32. Chameau, P., Qin, Y., Spijker, S., Smit, G. & Joels, M. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J. Neurophysiol. 97, 5–14 (2007).

    Article  CAS  Google Scholar 

  33. Takahashi, T. et al. Corticosterone acutely prolonged N-methyl-D-aspartate receptor–mediated Ca2+ elevation in cultured rat hippocampal neurons. J. Neurochem. 83, 1441–1451 (2002).

    Article  CAS  Google Scholar 

  34. McReynolds, J.R. et al. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions. Neurobiol. Learn. Mem. 93, 312–321 (2010).

    Article  CAS  Google Scholar 

  35. Molteni, R. et al. Depression-prone mice with reduced glucocorticoid receptor expression display an altered stress-dependent regulation of brain-derived neurotrophic factor and activity-regulated cytoskeleton-associated protein. J. Psychopharmacol. 24, 595–603 (2010).

    Article  CAS  Google Scholar 

  36. Liu, W., Yuen, E.Y. & Yan, Z. The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J. Biol. Chem. 285, 6101–6108 (2010).

    Article  CAS  Google Scholar 

  37. Vazdarjanova, A. et al. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II–positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498, 317–329 (2006).

    Article  CAS  Google Scholar 

  38. Jeanneteau, F., Garabedian, M.J. & Chao, M.V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc. Natl. Acad. Sci. USA 105, 4862–4867 (2008).

    Article  CAS  Google Scholar 

  39. Groeneweg, F.L., Karst, H., de Kloet, E.R. & Joels, M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J. Endocrinol. 209, 153–167 (2011).

    Article  CAS  Google Scholar 

  40. Numakawa, T. et al. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc. Natl. Acad. Sci. USA 106, 647–652 (2009).

    Article  CAS  Google Scholar 

  41. Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98 (2003).

    Article  Google Scholar 

  42. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–693 (1998).

    Article  CAS  Google Scholar 

  43. Ji, Y., Pang, P.T., Feng, L. & Lu, B. Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat. Neurosci. 8, 164–172 (2005).

    Article  CAS  Google Scholar 

  44. Alonso, M. et al. BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12, 551–560 (2002).

    Article  CAS  Google Scholar 

  45. Allaman, I., Pellerin, L. & Magistretti, P.J. Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. J. Neurochem. 88, 900–908 (2004).

    Article  CAS  Google Scholar 

  46. Sandi, C. Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci. 34, 165–176 (2011).

    Article  CAS  Google Scholar 

  47. Bekinschtein, P. et al. Persistence of long-term memory storage requires a late protein synthesis– and BDNF- dependent phase in the hippocampus. Neuron 53, 261–277 (2007).

    Article  CAS  Google Scholar 

  48. Roozendaal, B. & McGaugh, J.L. Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur. J. Neurosci. 9, 76–83 (1997).

    Article  CAS  Google Scholar 

  49. Ou, L.C., Yeh, S.H. & Gean, P.W. Late expression of brain-derived neurotrophic factor in the amygdala is required for persistence of fear memory. Neurobiol. Learn. Mem. 93, 372–382 (2010).

    Article  CAS  Google Scholar 

  50. Ji, J.Z., Wang, X.M. & Li, B.M. Deficit in long-term contextual fear memory induced by blockade of beta-adrenoceptors in hippocampal CA1 region. Eur. J. Neurosci. 17, 1947–1952 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Stern, S. Sheng, S. Taubenfeld and S. Katz for technical assistance, A. Suzuki and X. Ye for comments on the manuscript, and R. Testi for valuable discussions. This work was supported by grants from the US National Institutes of Health (RO1-MH065635), National Alliance for Research on Schizophrenia and Depression (NARSAD) and the Philoctetes Foundation to C.M.A. and US National Institutes of Health grant F31-MH816213 to D.Y.C.

Author information

Authors and Affiliations

Authors

Contributions

C.M.A., D.Y.C. and D.B.-M. designed and developed the study. D.Y.C. carried out the behavioral studies. D.Y.C., D.B.-M. and G.P. carried out the biochemical studies and analyses. C.M.A., D.Y.C. and D.B.-M. wrote the manuscript.

Corresponding author

Correspondence to Cristina M Alberini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Tables 1–6 (PDF 42827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Bambah-Mukku, D., Pollonini, G. et al. Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15, 1707–1714 (2012). https://doi.org/10.1038/nn.3266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing