Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated input reveals coexisting coding schemes in a sensory cortex

Abstract

As in other sensory modalities, one function of the somatosensory system is to detect coherence and contrast in the environment. To investigate the neural bases of these computations, we applied different spatiotemporal patterns of stimuli to rat whiskers while recording multiple neurons in the barrel cortex. Model-based analysis of the responses revealed different coding schemes according to the level of input correlation. With uncorrelated stimuli on 24 whiskers, we identified two distinct functional categories of neurons, analogous in the temporal domain to simple and complex cells of the primary visual cortex. With correlated stimuli, however, a complementary coding scheme emerged: two distinct cell populations, similar to reinforcing and antagonist neurons described in the higher visual area MT, responded specifically to correlations. We suggest that similar context-dependent coexisting coding strategies may be present in other sensory systems to adapt sensory integration to specific stimulus statistics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Barrel cortex neurons encode whisker deflections in a common low-dimensional subspace.
Figure 2: STC analysis reveals simple and complex nonlinear functions in response to spatially uncorrelated stimuli.
Figure 3: Neurons' nonlinear functions depend on interwhisker instantaneous correlation.
Figure 4: Center-surround tuning maps of local neurons reveals preference for antagonist center-surround stimulations.
Figure 5: Confirmation of the antagonist tuning of local neurons.
Figure 6: Confirmation of the functional properties of global neurons.
Figure 7: Center and surround phase tuning with temporal delays.

Similar content being viewed by others

References

  1. Carvell, G.E. & Simons, D.J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simons, D.J. Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophysiol. 41, 798–820 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Brecht, M. & Sakmann, B. Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J. Physiol. (Lond.) 543, 49–70 (2002).

    Article  CAS  Google Scholar 

  4. Moore, C.I. & Nelson, S.B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882–2892 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Wilent, W.B. & Contreras, D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat. Neurosci. 8, 1364–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Hartmann, M.J., Johnson, N.J., Towal, R.B. & Assad, C. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J. Neurosci. 23, 6510–6519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ritt, J.T., Andermann, M.L. & Moore, C.I. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57, 599–613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ego-Stengel, V., Souza, T.M., Jacob, V. & Shulz, D.E. Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. J. Neurophysiol. 93, 1450–1467 (2005).

    Article  PubMed  Google Scholar 

  9. Shimegi, S., Ichikawa, T., Akasaki, T. & Sato, H. Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J. Neurosci. 19, 10164–10175 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simons, D.J. & Carvell, G.E. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61, 311–330 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Ghazanfar, A.A. & Nicolelis, M.A. Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cereb. Cortex 9, 348–361 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hirata, A. & Castro-Alamancos, M.A. Cortical transformation of wide-field (multiwhisker) sensory responses. J. Neurophysiol. 100, 358–370 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mirabella, G., Battiston, S. & Diamond, M.E. Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb. Cortex 11, 164–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Brumberg, J.C., Pinto, D.J. & Simons, D.J. Spatial gradients and inhibitory summation in the rat whisker barrel system. J. Neurophysiol. 76, 130–140 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz, O., Pillow, J.W., Rust, N.C. & Simoncelli, E.P. Spike–triggered neural characterization. J. Vis. 6, 484–507 (2006).

    Article  PubMed  Google Scholar 

  16. de Ruyter van Steveninck, R. & Bialek, W. Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc. R. Soc. Lond. B Biol. Sci. 234, 379–414 (1988).

    Article  Google Scholar 

  17. de Kock, C.P. & Sakmann, B. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl. Acad. Sci. USA 106, 16446–16450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geffen, M.N., Broome, B.M., Laurent, G. & Meister, M. Neural encoding of rapidly fluctuating odors. Neuron 61, 570–586 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Maravall, M., Petersen, R.S., Fairhall, A.L., Arabzadeh, E. & Diamond, M.E. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol. 5, e19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Skottun, B.C. et al. Classifying simple and complex cells on the basis of response modulation. Vision Res. 31, 1079–1086 (1991).

    CAS  PubMed  Google Scholar 

  21. Pettigrew, J.D., Nikara, T. & Bishop, P. Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 6, 373–390 (1968).

    CAS  PubMed  Google Scholar 

  22. Lee, S.H. & Simons, D. Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. J. Neurophysiol. 91, 223–229 (2004).

    Article  PubMed  Google Scholar 

  23. Ghazanfar, A.A. & Nicolelis, M.A. Nonlinear processing of tactile information in the thalamocortical loop. J. Neurophysiol. 78, 506–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Born, R.T. & Tootell, R.B. Segregation of global and local motion processing in primate middle temporal visual area. Nature 357, 497–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Jadhav, S.P., Wolfe, J. & Feldman, D.E. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat. Neurosci. 12, 792–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Shimegi, S., Akasaki, T., Ichikawa, T. & Sato, H. Physiological and anatomical organization of multi-whisker response interactions in the barrel cortex of rats. J. Neurosci. 20, 6241–6248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simons, D.J. Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54, 615–635 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Jacob, V., Cam, J.L., Ego-Stengel, V. & Shulz, D.E. Emergent properties of tactile scenes selectively activate barrel cortex neurons. Neuron 60, 1112–1125 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Born, R.T. Center–surround interactions in the middle temporal visual area of the owl monkey. J. Neurophysiol. 84, 2658–2669 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sincich, L.C., Park, K.F., Wohlgemuth, M.J. & Horton, J.C. Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 7, 1123–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Pei, Y.C., Hsiao, S.S. & Bensmaia, S.J. The tactile integration of local motion cues is analogous to its visual counterpart. Proc. Natl. Acad. Sci. USA 105, 8130–8135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pei, Y.-C., Hsiao, S.S., Craig, J.C. & Bensmaia, S.J. Neural mechanisms of tactile motion integration in somatosensory cortex. Neuron 69, 536–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Jones, H.E., Wang, W. & Sillito, A.M. Spatial organization and magnitude of orientation contrast interactions in primate V1. J. Neurophysiol. 88, 2796–2808 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Newsome, W.T., Wurtz, R.H., Dürsteler, M.R. & Mikami, A. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 5, 825–840 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spatiotemporal elements of macaque v1 receptive fields. Neuron 46, 945–956 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ego-Stengel, V., Le Cam, J. & Shulz, D.E. Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system. J. Neurosci. 32, 3339–3351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aguilar, J.R. & Castro-Alamancos, M. Spatiotemporal gating of sensory inputs in thalamus during quiescent and activated states. J. Neurosci. 25, 10990–11002 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roy, N.C., Bessaih, T. & Contreras, D. Comprehensive mapping of whisker-evoked responses reveals broad, sharply tuned thalamocortical input to layer 4 of barrel cortex. J. Neurophysiol. 105, 2421–2437 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Petersen, R.S. et al. Diverse and temporally precise kinetic feature selectivity in the VPm thalamic nucleus. Neuron 60, 890–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Le Cam, J., Estebanez, L., Jacob, V. & Shulz, D.E. Spatial structure of multi-whisker receptive fields in the barrel cortex is stimulus dependent. J. Neurophysiol. 106, 986–998 (2011).

    Article  PubMed  Google Scholar 

  43. Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Touryan, J., Felsen, G. & Dan, Y. Spatial structure of complex cell receptive fields measured with natural images. Neuron 45, 781–791 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Friedberg, M.H., Lee, S.M. & Ebner, F.F. Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J. Neurophysiol. 81, 2243–2252 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Jacob, V. et al. The Matrix: a new tool for probing the whisker-to-barrel system with natural stimuli. J. Neurosci. Methods 189, 65–74 (2010).

    Article  PubMed  Google Scholar 

  47. Wolfe, J. et al. Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol. 6, e215 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. DiCarlo, J.J., Lane, J.W., Hsiao, S.S. & Johnson, K.O. Marking microelectrode penetrations with fluorescent dyes. J. Neurosci. Methods 64, 75–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Cardona, A. et al. An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8, e1000502 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Smyth, D., Willmore, B., Baker, G.E., Thompson, I.D. & Tolhurst, D.J. The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 23, 4746–4759 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Boubenec for providing the natural whisker stimuli, L. Abbott, L. Bourdieu, A. Davison, V. Ego-Stengel, Y. Frégnac, O. Marre, M. Maravall and H. Sompolinsky for comments on the manuscript, and J. Fournier for advice on the protocol. Funding was provided by ANR (NATACS, HR-CORTEX and TRANSTACT) and the European Community (FET grants FACETS FP6-015879, BrainScaleS FP7-269921 and Brain-i-Nets FP7-243914). S.E.B. was supported by Fondation pour la Recherche Medicale.

Author information

Authors and Affiliations

Authors

Contributions

L.E. and S.E.B. devised the protocols and analyzed the data with D.E.S. and A.D. L.E. and S.E.B. carried out the extracellular recordings. D.E.S. and A.D. supervised the research. L.E., S.E.B., A.D. and D.E.S. wrote the manuscript.

Corresponding authors

Correspondence to Alain Destexhe or Daniel E Shulz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Table 1 (PDF 3444 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estebanez, L., Boustani, S., Destexhe, A. et al. Correlated input reveals coexisting coding schemes in a sensory cortex. Nat Neurosci 15, 1691–1699 (2012). https://doi.org/10.1038/nn.3258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing