Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors

Abstract

The striatum regulates motor control, reward and learning. Abnormal function of striatal GABAergic medium spiny neurons (MSNs) is believed to contribute to the deficits in these processes that are observed in many neuropsychiatric diseases. The orphan G protein–coupled receptor GPR88 is robustly expressed in MSNs and is regulated by neuropharmacological drugs, but its contribution to MSN physiology and behavior is unclear. We found that, in the absence of GPR88, MSNs showed increased glutamatergic excitation and reduced GABAergic inhibition, which promoted enhanced firing rates in vivo, resulting in hyperactivity, poor motor coordination and impaired cue-based learning in mice. Targeted viral expression of GPR88 in MSNs rescued the molecular and electrophysiological properties and normalized behavior, suggesting that aberrant MSN activation in the absence of GPR88 underlies behavioral deficits and its dysfunction may contribute to behaviors observed in neuropsychiatric disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of Gpr88–Cre-EGFP mice.
Figure 2: Hyperlocomotion and motor deficits in Gpr88Cre/Cre mice.
Figure 3: Impaired cue-based learning by Gpr88Cre/Cre mice.
Figure 4: Increased firing rate in MSNs of freely moving Gpr88Cre/Cre mice.
Figure 5: Reduced GABAergic and enhanced glutamatergic signaling in MSNs of Gpr88Cre/Cre mice.
Figure 6: Alterations in mRNA and intracellular signaling in striatum of Gpr88Cre/Cre mice.
Figure 7: Viral re-expression of GPR88 in striatum restores the molecular properties and behavior.
Figure 8: Intracellular RGS4 activity in MSNs is required for viral-mediated electrophysiological rescue.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

References

  1. Gerfen, C.R. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci. 15, 285–320 (1992).

    CAS  PubMed  Google Scholar 

  2. Surmeier, D.J., Plotkin, J. & Shen, W. Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr. Opin. Neurobiol. 19, 621–628 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Balleine, B.W., Delgado, M.R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Drew, M.R. et al. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J. Neurosci. 27, 7731–7739 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Russell, V.A. Neurobiology of animal models of attention-deficit hyperactivity disorder. J. Neurosci. Methods 161, 185–198 (2007).

    PubMed  Google Scholar 

  6. Graybiel, A.M., Aosaki, T., Flaherty, A.W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    CAS  PubMed  Google Scholar 

  7. Joshi, P.R. et al. Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J. Neurosci. 29, 2414–2427 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Massart, R., Guilloux, J.P., Mignon, V., Sokoloff, P. & Diaz, J. Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. Eur. J. Neurosci. 30, 397–414 (2009).

    PubMed  Google Scholar 

  9. Böhm, C. et al. Effects of antidepressant treatment on gene expression profile in mouse brain: cell type–specific transcription profiling using laser microdissection and microarray analysis. J. Neurochem. 97 (suppl. 1), 44–49 (2006).

    PubMed  Google Scholar 

  10. Conti, B. et al. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol. Psychiatry 12, 167–189 (2007).

    CAS  PubMed  Google Scholar 

  11. Befort, K. et al. Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur. J. Neurosci. 27, 2973–2984 (2008).

    CAS  PubMed  Google Scholar 

  12. Logue, S.F. et al. The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol. Cell Neurosci. 42, 438–447 (2009).

    CAS  PubMed  Google Scholar 

  13. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  14. Sanz, E. et al. Cell type–specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Darvas, M. & Palmiter, R.D. Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition. J. Neurosci. 30, 1158–1165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McDonald, R.J. & White, N.M. Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav. Neural Biol. 61, 260–270 (1994).

    CAS  PubMed  Google Scholar 

  17. Packard, M.G. & Knowlton, B.J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002).

    CAS  PubMed  Google Scholar 

  18. Darvas, M. & Palmiter, R.D. Contributions of striatal dopamine signaling to the modulation of cognitive flexibility. Biol. Psychiatry 69, 704–707 (2011).

    CAS  PubMed  Google Scholar 

  19. van der Heyden, J.A. & Bradford, L.D. A rapidly acquired one-way conditioned avoidance procedure in rats as a primary screening test for antipsychotics: influence of shock intensity on avoidance performance. Behav. Brain Res. 31, 61–67 (1988).

    CAS  PubMed  Google Scholar 

  20. Berke, J.D., Okatan, M., Skurski, J. & Eichenbaum, H.B. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43, 883–896 (2004).

    CAS  PubMed  Google Scholar 

  21. Wilson, C.J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Núñez-Abades, P.A., Pattillo, J.M., Hodgson, T.M. & Cameron, W.E. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. J. Neurophysiol. 84, 2317–2329 (2000).

    PubMed  Google Scholar 

  23. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferguson, S.M. & Neumaier, J.F. Grateful DREADDs: engineered receptors reveal how neural circuits regulate behavior. Neuropsychopharmacology 37, 296–297 (2012).

    PubMed  Google Scholar 

  25. Lobo, M.K. et al. Cell type–specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, W. et al. Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens core. J. Physiol. (Lond.) 590, 3743–3769 (2012).

    CAS  Google Scholar 

  27. Zhang, F. et al. Association analyses of the interaction between the ADSS and ATM genes with schizophrenia in a Chinese population. BMC Med. Genet. 9, 119 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Chen, X. et al. FBXL21 association with schizophrenia in Irish family and case-control samples. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 147B, 1231–1237 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chowdari, K.V. et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum. Mol. Genet. 11, 1373–1380 (2002).

    CAS  PubMed  Google Scholar 

  30. Berman, D.M., Wilkie, T.M. & Gilman, A.G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86, 445–452 (1996).

    CAS  PubMed  Google Scholar 

  31. Ding, J. et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci. 9, 832–842 (2006).

    CAS  PubMed  Google Scholar 

  32. Corvin, A.P. et al. Confirmation and refinement of an 'at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol. Psychiatry 9, 208–213 (2004).

    CAS  PubMed  Google Scholar 

  33. Lerner, T.N. & Kreitzer, A.C. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to Parkinsonian motor deficits. Neuron 73, 347–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    CAS  PubMed  Google Scholar 

  35. Jacob, T.C., Moss, S.J. & Jurd, R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat. Rev. Neurosci. 9, 331–343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Janssen, M.J., Ade, K.K., Fu, Z. & Vicini, S. Dopamine modulation of GABA tonic conductance in striatal output neurons. J. Neurosci. 29, 5116–5126 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Parker, J.G. et al. Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice. J. Neurosci. 31, 17103–17112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ade, K.K., Janssen, M.J., Ortinski, P.I. & Vicini, S. Differential tonic GABA conductances in striatal medium spiny neurons. J. Neurosci. 28, 1185–1197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).

    CAS  PubMed  Google Scholar 

  40. Zweifel, L.S. et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl. Acad. Sci. USA 106, 7281–7288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicola, S.M., Surmeier, J. & Malenka, R.C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000).

    CAS  PubMed  Google Scholar 

  42. Surmeier, D.J. et al. The role of dopamine in modulating the structure and function of striatal circuits. Prog. Brain Res. 183, 149–167 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ralph-Williams, R.J., Lehmann-Masten, V., Otero-Corchon, V., Low, M.J. & Geyer, M.A. Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knockout mice. J. Neurosci. 22, 9604–9611 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kodsi, M.H. & Swerdlow, N.R. Quinolinic acid lesions of the ventral striatum reduce sensorimotor gating of acoustic startle in rats. Brain Res. 643, 59–65 (1994).

    CAS  PubMed  Google Scholar 

  45. Braff, D.L., Geyer, M.A. & Swerdlow, N.R. Human studies of prepulse inhibition of startle: normal subjects, patient groups and pharmacological studies. Psychopharmacology (Berl.) 156, 234–258 (2001).

    CAS  Google Scholar 

  46. Brandish, P.E. et al. Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 45, 861–872 (2005).

    CAS  PubMed  Google Scholar 

  47. Ogden, C.A. et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol. Psychiatry 9, 1007–1029 (2004).

    CAS  PubMed  Google Scholar 

  48. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    CAS  PubMed  Google Scholar 

  49. Quintana, A., Kruse, S.E., Kapur, R.P., Sanz, E. & Palmiter, R.D. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc. Natl. Acad. Sci. USA 107, 10996–11001 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Perez, F.A. & Palmiter, R.D. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. USA 102, 2174–2179 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Darvas, M., Fadok, J.P. & Palmiter, R.D. Requirement of dopamine signaling in the amygdala and striatum for learning and maintenance of a conditioned avoidance response. Learn. Mem. 18, 136–143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Duncan, D.T., Prodduturi, N. & Zhang, B. WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics 11, P10 (2010).

    PubMed Central  Google Scholar 

  53. Ariano, M.A. et al. Striatal potassium channel dysfunction in Huntington′s disease transgenic mice. J. Neurophysiol. 93, 2565–2574 (2005).

    CAS  PubMed  Google Scholar 

  54. Mermelstein, P.G., Song, W.J., Tkatch, T., Yan, Z. & Surmeier, D.J. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J. Neurosci. 18, 6650–6661 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Quintana, A. et al. Fatal breathing dysfunction in a mouse model of Leigh syndrome. J. Clin. Invest. 122, 2359–2368 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank G. Froelick for assistance with histology, J. Parker for help making the targeting construct, L. Zweifel and M. Carter for helpful discussions, and D. Durnam for editing. This work was supported by grants NS052536, NS060803, HD02274 (N.S.B.), MH086386 (G.S.M. and P.S.A.), DA007278 (G.P.S.) and GM032875 (G.S.M.) from the US National Institutes of Health. A.Q. and E.S. were recipients of Spanish Ministry of Science and Innovation postdoctoral mobility program fellowships.

Author information

Authors and Affiliations

Authors

Contributions

A.Q. and R.D.P. designed the study. R.D.P. generated the Gpr88Cre/Cre mice. A.Q. performed the histological experiments. A.Q. and E.S. performed the RiboTag and biochemical experiments. E.S. performed the microarray experiment and A.Q. analyzed the data. W.W., G.P.S. and M.J.W. performed the in vitro electrophysiological studies and analyzed the data. A.Q. and A.D.G. performed the in vivo electrophysiological experiments and A.D.G. analyzed the data. A.Q. and B.A.R. performed the behavioral experiments and analyzed the data. A.Q. made the viral vectors and performed stereotaxic surgery. A.L.T. performed the neuronal primary culture experiments. P.S.A. and G.S.M. supervised the biochemical experiments. N.S.B. supervised the electrophysiological experiments. R.D.P. supervised the study. A.Q., N.S.B. and R.D.P. wrote the manuscript.

Corresponding author

Correspondence to Richard D Palmiter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 3892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintana, A., Sanz, E., Wang, W. et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci 15, 1547–1555 (2012). https://doi.org/10.1038/nn.3239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing