Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man

Abstract

Mutations inactivating the potassium channel KCNQ4 (Kv7.4) lead to deafness in humans and mice. In addition to its expression in mechanosensitive hair cells of the inner ear, KCNQ4 is found in the auditory pathway and in trigeminal nuclei that convey somatosensory information. We have now detected KCNQ4 in the peripheral nerve endings of cutaneous rapidly adapting hair follicle and Meissner corpuscle mechanoreceptors from mice and humans. Electrophysiological recordings from single afferents from Kcnq4−/− mice and mice carrying a KCNQ4 mutation found in DFNA2-type monogenic dominant human hearing loss showed elevated mechanosensitivity and altered frequency response of rapidly adapting, but not of slowly adapting nor of D-hair, mechanoreceptor neurons. Human subjects from independent DFNA2 pedigrees outperformed age-matched control subjects when tested for vibrotactile acuity at low frequencies. This work describes a gene mutation that modulates touch sensitivity in mice and humans and establishes KCNQ4 as a specific molecular marker for rapidly adapting Meissner and a subset of hair follicle afferents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KCNQ4 is expressed in a subset of DRG neurons.
Figure 2: KCNQ4 in mouse skin mechanoreceptors.
Figure 3: KCNQ4 is absent from terminal Schwann cells in lanceolate endings.
Figure 4: KCNQ4 dampens excitability of RAMs.
Figure 5: Altered frequency tuning in Kcnq4dn/+ mice.
Figure 6: KCNQ4 in human skin mechanoreceptors.
Figure 7: Enhanced detection of low-frequency vibrations in subjects with DFNA2 carrying KCNQ4 mutations.

Similar content being viewed by others

References

  1. Johnson, K.O. The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001).

    Article  CAS  Google Scholar 

  2. Lewin, G.R. & Moshourab, R. Mechanosensation and pain. J. Neurobiol. 61, 30–44 (2004).

    Article  Google Scholar 

  3. Loewenstein, W.R. & Rathkamp, R. The sites for mechano-electric conversion in a Pacinian corpuscle. J. Gen. Physiol. 41, 1245–1265 (1958).

    Article  CAS  Google Scholar 

  4. Maricich, S.M. et al. Merkel cells are essential for light-touch responses. Science 324, 1580–1582 (2009).

    Article  CAS  Google Scholar 

  5. Blake, D.T., Hsiao, S.S. & Johnson, K.O. Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 17, 7480–7489 (1997).

    Article  CAS  Google Scholar 

  6. Talbot, W.H., Darian-Smith, I., Kornhuber, H.H. & Mountcastle, V.B. The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol. 31, 301–334 (1968).

    Article  CAS  Google Scholar 

  7. BensmaÏa, S.J. & Hollins, M. The vibrations of texture. Somatosens. Mot. Res. 20, 33–43 (2003).

    Article  Google Scholar 

  8. Brown, D.A. & Passmore, G.M. Neural KCNQ (Kv7) channels. Br. J. Pharmacol. 156, 1185–1195 (2009).

    Article  CAS  Google Scholar 

  9. Biervert, C. et al. A potassium channel mutation in neonatal human epilepsy. Science 279, 403–406 (1998).

    Article  CAS  Google Scholar 

  10. Kharkovets, T. et al. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc. Natl. Acad. Sci. USA 97, 4333–4338 (2000).

    Article  CAS  Google Scholar 

  11. Tzingounis, A.V. et al. The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc. Natl. Acad. Sci. USA 107, 10232–10237 (2010).

    Article  CAS  Google Scholar 

  12. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437–446 (1999).

    Article  CAS  Google Scholar 

  13. Schroeder, B.C., Hechenberger, M., Weinreich, F., Kubisch, C. & Jentsch, T.J. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J. Biol. Chem. 275, 24089–24095 (2000).

    Article  CAS  Google Scholar 

  14. Yeung, S.Y.M. et al. Molecular expression and pharmacological identification of a role for K(v)7 channels in murine vascular reactivity. Br. J. Pharmacol. 151, 758–770 (2007).

    Article  CAS  Google Scholar 

  15. Wang, H.S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).

    Article  CAS  Google Scholar 

  16. Selyanko, A.A. et al. Inhibition of KCNQ1–4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J. Physiol. (Lond.) 522, 349–355 (2000).

    Article  CAS  Google Scholar 

  17. Lechner, S.G., Mayer, M. & Boehm, S. Activation of M1 muscarinic receptors triggers transmitter release from rat sympathetic neurons through an inhibition of M-type K+ channels. J. Physiol. (Lond.) 553, 789–802 (2003).

    Article  CAS  Google Scholar 

  18. Charlier, C. et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet. 18, 53–55 (1998).

    Article  CAS  Google Scholar 

  19. Peters, H.C., Hu, H., Pongs, O., Storm, J.F. & Isbrandt, D. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat. Neurosci. 8, 51–60 (2005).

    Article  CAS  Google Scholar 

  20. Watanabe, H. et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J. Neurochem. 75, 28–33 (2000).

    Article  CAS  Google Scholar 

  21. Passmore, G.M. et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J. Neurosci. 23, 7227–7236 (2003).

    Article  CAS  Google Scholar 

  22. Linley, J.E. et al. Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception. J. Neurosci. 28, 11240–11249 (2008).

    Article  CAS  Google Scholar 

  23. Kharkovets, T. et al. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J. 25, 642–652 (2006).

    Article  CAS  Google Scholar 

  24. Bourane, S. et al. Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron 64, 857–870 (2009).

    Article  CAS  Google Scholar 

  25. Luo, W., Enomoto, H., Rice, F.L., Milbrandt, J. & Ginty, D.D. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 64, 841–856 (2009).

    Article  CAS  Google Scholar 

  26. Bolanowski, S.J. & Zwislocki, J.J. Intensity and frequency characteristics of pacinian corpuscles. I. Action potentials. J. Neurophysiol. 51, 793–811 (1984).

    Article  Google Scholar 

  27. Koltzenburg, M., Stucky, C.L. & Lewin, G.R. Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 78, 1841–1850 (1997).

    Article  CAS  Google Scholar 

  28. Milenkovic, N., Wetzel, C., Moshourab, R. & Lewin, G.R. Speed and temperature dependences of mechanotransduction in afferent fibers recorded from the mouse saphenous nerve. J. Neurophysiol. 100, 2771–2783 (2008).

    Article  Google Scholar 

  29. Hu, J., Chiang, L.-Y., Koch, M. & Lewin, G.R. Evidence for a protein tether involved in somatic touch. EMBO J. 29, 855–867 (2010).

    Article  CAS  Google Scholar 

  30. Lechner, S.G. & Lewin, G.R. Peripheral sensitisation of nociceptors via G-protein-dependent potentiation of mechanotransduction currents. J. Physiol. (Lond.) 587, 3493–3503 (2009).

    Article  CAS  Google Scholar 

  31. Søgaard, R., Ljungstrøm, T., Pedersen, K.A., Olesen, S.P. & Jensen, B.S. KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. Am. J. Physiol. Cell Physiol. 280, C859–C866 (2001).

    Article  Google Scholar 

  32. Mencía, A. et al. A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum. Genet. 123, 41–53 (2008).

    Article  Google Scholar 

  33. Kim, H.J., Lv, P., Sihn, C.-R. & Yamoah, E.N. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J. Biol. Chem. 286, 1517–1527 (2011).

    Article  CAS  Google Scholar 

  34. Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 (2007).

    Article  CAS  Google Scholar 

  35. De Leenheer, E.M.R. et al. Longitudinal and cross-sectional phenotype analysis in a new, large Dutch DFNA2/KCNQ4 family. Ann. Otol. Rhinol. Laryngol. 111, 267–274 (2002).

    Article  Google Scholar 

  36. Johansson, R.S. & Vallbo, A.B. Detection of tactile stimuli. Thresholds of afferent units related to psychophysical thresholds in the human hand. J. Physiol. (Lond.) 297, 405–422 (1979).

    Article  CAS  Google Scholar 

  37. Van Boven, R.W. & Johnson, K.O. The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger. Neurology 44, 2361–2366 (1994).

    Article  CAS  Google Scholar 

  38. Bensmaia, S.J., Denchev, P.V., Dammann, J.F., Craig, J.C. & Hsiao, S.S. The representation of stimulus orientation in the early stages of somatosensory processing. J. Neurosci. 28, 776–786 (2008).

    Article  CAS  Google Scholar 

  39. Knibestöl, M. Stimulus–response functions of rapidly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. (Lond.) 232, 427–452 (1973).

    Article  Google Scholar 

  40. Vallbo, A.B., Olausson, H., Wessberg, J. & Kakuda, N. Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J. Physiol. (Lond.) 483, 783–795 (1995).

    Article  CAS  Google Scholar 

  41. Trulsson, M. & Essick, G.K. Sensations evoked by microstimulation of single mechanoreceptive afferents innervating the human face and mouth. J. Neurophysiol. 103, 1741–1747 (2010).

    Article  CAS  Google Scholar 

  42. Hu, J. & Lewin, G.R. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. (Lond.) 577, 815–828 (2006).

    Article  CAS  Google Scholar 

  43. Tsunozaki, M. & Bautista, D.M. Mammalian somatosensory mechanotransduction. Curr. Opin. Neurobiol. 19, 362–369 (2009).

    Article  CAS  Google Scholar 

  44. French, A.S. & Torkkeli, P.H. Mechanotransduction in spider slit sensilla. Can. J. Physiol. Pharmacol. 82, 541–548 (2004).

    Article  CAS  Google Scholar 

  45. Hammami, S. et al. Cell volume and membrane stretch independently control K+ channel activity. J. Physiol. (Lond.) 587, 2225–2231 (2009).

    Article  CAS  Google Scholar 

  46. Jentsch, T.J. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  Google Scholar 

  47. Darian-Smith, I., Davidson, I. & Johnson, K.O. Peripheral neural representation of spatial dimensions of a textured surface moving across the monkey's finger pad. J. Physiol. (Lond.) 309, 135–146 (1980).

    Article  CAS  Google Scholar 

  48. Knibestöl, M. Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. (Lond.) 245, 63–80 (1975).

    Article  Google Scholar 

  49. Johansson, R.S. & Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    Article  CAS  Google Scholar 

  50. Johansson, R.S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Seidler and H. Thraenhardt for technical assistance, the DFNA2 families for their collaboration, C. Birchmeier (MDC Berlin) for the MafA antibody, M. Maurer (Charité Berlin) for human skin biopsies and B. Purfuerst for electron microscopy. Supported by an SAW (Senatsausschuss Wettbewerb) grant of the Leibniz Gemeinschaft to T.J.J. and G.R.L., the Prix Louis-Jeantet de Médecine and the Ernst-Jung Preis für Medizin to T.J.J. and grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB665) to G.R.L.; additional funding (T.J.J. and G.R.L.) was provided by the DFG (Exc 257 NeuroCure).

Author information

Authors and Affiliations

Authors

Contributions

M.H. performed and evaluated morphological and mouse behavioral studies, examined subjects and wrote the paper; S.G.L. performed and evaluated electrophysiological experiments, designed and built psychometric tests, examined subjects and wrote the paper; V.V. did initial antibody characterization and DRG staining; C.W. established mouse behavioral studies and analyzed electron micrographs; C.W.C., E.M.D.L., M.A.M.-P. and G.A. organized human studies; T.J.J. initiated the project, designed and evaluated experiments, organized human studies and wrote the paper; G.R.L. designed and evaluated experiments and wrote the paper.

Corresponding authors

Correspondence to Thomas J Jentsch or Gary R Lewin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2426 kb)

Supplementary Video 1

z-stack movie of KCNQ4-positive nerve endings in a mouse hair follicle. (MOV 1250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidenreich, M., Lechner, S., Vardanyan, V. et al. KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci 15, 138–145 (2012). https://doi.org/10.1038/nn.2985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing