Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones

Abstract

During axon pathfinding, growth cones commonly show changes in sensitivity to guidance cues that follow a cell-intrinsic timetable. The cellular timer mechanisms that regulate such changes are, however, poorly understood. Here we have investigated microRNAs (miRNAs) in the timing control of sensitivity to the semaphorin Sema3A in Xenopus laevis retinal ganglion cell (RGC) growth cones. A developmental profiling screen identified miR-124 as a candidate timer. Loss of miR-124 delayed the onset of Sema3A sensitivity and concomitant neuropilin-1 (NRP1) receptor expression and caused cell-autonomous pathfinding errors. CoREST, a cofactor of a NRP1 repressor, was newly identified as a target and mediator of miR-124 for this highly specific temporal aspect of RGC growth cone responsiveness. Our findings indicate that miR-124 is important in regulating the intrinsic temporal changes in RGC growth cone sensitivity and suggest that miRNAs may act broadly as linear timers in vertebrate neuronal development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression profiling of miRNAs in the developing retina.
Figure 2: miR-124 knockdown does not affect the timing of RGC genesis and differentiation.
Figure 3: Responsiveness of growth cones to Sema3A is delayed in miR-124 morphants.
Figure 4: Electroporated miR-124 duplex rescues normal onset of Sema3A response.
Figure 5: Expression of NRP1 in growth cones is delayed in miR-124 morphants.
Figure 6: RGC axons are misrouted in the ventral tectum in miR-124 morphants.
Figure 7: miR-124 acts autonomously to cause retinal axon misrouting (a) Schematic representation of the experiment.
Figure 8: CoREST mediates miR-124 action on Sema3A responsiveness.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Zou, Y., Stoeckli, E., Chen, H. & Tessier-Lavigne, M. Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102, 363–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shewan, D., Dwivedy, A., Anderson, R. & Holt, C.E. Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nat. Neurosci. 5, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Campbell, D.S. et al. Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J. Neurosci. 21, 8538–8547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piper, M. et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shirasaki, R., Katsumata, R. & Murakami, F. Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279, 105–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, M.H. & Day, M.L. Egg timers: how is developmental time measured in the early vertebrate embryo? Bioessays 22, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Aulehla, A. & Pourquié, O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol. 2, a000869 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Decembrini, S. et al. MicroRNAs couple cell fate and developmental timing in retina. Proc. Natl. Acad. Sci. USA 106, 21179–21184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K. & Kosik, K.S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wienholds, E. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Moss, E.G. Heterochronic genes and the nature of developmental time. Curr. Biol. 17, R425–R434 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477 (2005).

    Article  PubMed  Google Scholar 

  20. Sempere, L.F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holt, C.E. A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip. J. Neurosci. 9, 3123–3145 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Griffiths-Jones, S., Grocock, R.J., Van Dongen, S., Bateman, A. & Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., Moulton, J.D. & Plasterk, R.H.A. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5, e203 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao, F.-B. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 5, 25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Taranova, O.V. et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 20, 1187–1202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hocking, J.C., Hehr, C.L., Bertolesi, G.E., Wu, J.Y. & McFarlane, S. Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells. Mech. Dev. 127, 36–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Visvanathan, J., Lee, S., Lee, B., Lee, J.W. & Lee, S.-K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, L.-C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clark, A.M. et al. The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res. 38, 3780–3793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao, X., Pfaff, S.L. & Gage, F.H. A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531–536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holt, C.E. Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? J. Neurosci. 4, 1130–1152 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurschat, P., Bielenberg, D., Rossignol-Tallandier, M., Stahl, A. & Klagsbrun, M. Neuron restrictive silencer factor NRSF/REST is a transcriptional repressor of neuropilin-1 and diminishes the ability of semaphorin 3A to inhibit keratinocyte migration. J. Biol. Chem. 281, 2721–2729 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Diefenbach, T.J., Guthrie, P.B. & Kater, S.B. Stimulus history alters behavioral responses of neuronal growth cones. J. Neurosci. 20, 1484–1494 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zivraj, K.H. et al. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 30, 15464–15478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giraldez, A.J. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Jung, H., O'Hare, C.M. & Holt, C.E. Translational regulation in growth cones. Curr. Opin. Genet. Dev. 21, 458–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leung, K.-M. et al. Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9, 1247–1256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, K.Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keleman, K. et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, H., He, Z., Bagri, A. & Tessier-Lavigne, M. Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21, 1283–1290 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Brittis, P.A., Lu, Q. & Flanagan, J.G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Mann, F., Harris, W.A. & Holt, C.E. New views on retinal axon development: a navigation guide. Int. J. Dev. Biol. 48, 957–964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Atkinson-Leadbeater, K. et al. Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J. Neurosci. 30, 685–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feldheim, D.A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Pinter, R. & Hindges, R. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS ONE 5, e10021 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (Garland, New York and London, 1994).

  47. Cornel, E. & Holt, C. Precocious pathfinding: retinal axons can navigate in an axonless brain. Neuron 9, 1001–1011 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Obernosterer, G., Martinez, J. & Alenius, M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat. Protoc. 2, 1508–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Falk, J. et al. Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev. Biol. 7, 107 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Woolford for her contribution to the analysis of high-throughput sequencing data, H. Lynn for help on cloning and M. Wood for participation in collapse analysis. We also thank A. Dwivedy, L. Strochlic, J. Falk, K. Leung, M. Agathocleous, A. Lin, S. McFarlane and A. Almeida for technical assistance. We thank W. Harris, A.C. Lee, J. Yoon and M. Agathocleous for critically reading the manuscript, as well as all the members of the Harris/Holt laboratory for their input. This work was supported by postdoctoral fellowships from the National Research Council of Canada (M.-L.B.) and Alberta Heritage Foundation for Medical Research (M.-L.B.), by Wellcome Trust Programme and UK Medical Research Council grants (C.E.H.) and by a European Framework 6 grant (SIROCCO) (E.A.M.).

Author information

Authors and Affiliations

Authors

Contributions

C.E.H. and M.-L.B. conceived the project. M.-L.B. performed most of the experiments and data analysis. M.-L.B., K.H.Z., C.A.-G., J.A., C.B. and L.D.G. participated in profiling experiments and analyses. K.H.Z. contributed to Slit2 and LPA collapse assays. C.A.-G. determined the putative targets of miR-124. A.M. performed ISH on cryosections of wild-type Xenopus. E.A.M. designed and discussed profiling experiments. M.-L.B. and C.E.H. wrote the manuscript.

Corresponding author

Correspondence to Christine E Holt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 13253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudet, ML., Zivraj, K., Abreu-Goodger, C. et al. miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat Neurosci 15, 29–38 (2012). https://doi.org/10.1038/nn.2979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing