Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons

Abstract

Neostriatal cholinergic interneurons are believed to be important for reinforcement-mediated learning and response selection by signaling the occurrence and motivational value of behaviorally relevant stimuli through precisely timed multiphasic population responses. An important problem is to understand how these signals regulate the functioning of the neostriatum. Here we describe the synaptic organization of a previously unknown circuit that involves direct nicotinic excitation of several classes of GABAergic interneurons, including neuroptide Y–expressing neurogilaform neurons, and enables cholinergic interneurons to exert rapid inhibitory control of the activity of projection neurons. We also found that, in vivo, the dominant effect of an optogenetically reproduced pause-excitation population response of cholinergic interneurons was powerful and rapid inhibition of the firing of projection neurons that is coincident with synchronous cholinergic activation. These results reveal a previously unknown circuit mechanism that transmits reinforcement-related information of ChAT interneurons in the mouse neostriatal network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of GABAergic IPSCs elicited in SPNs with optogenetic stimulation of ChAT interneurons.
Figure 2: Synaptic interactions of ChAT and NPY-NGF interneurons and SPNs.
Figure 3: Optogenetic activation of ChAT interneurons elicits nEPSPs and GABAergic IPSPs and triggers action potential firing in NPY-NGF interneurons.
Figure 4: FSIs do not mediate the inhibition of SPNs by ChAT interneurons.
Figure 5: Optogenetically reproduced pause-excitation population response of ChAT interneurons elicits powerful inhibition in SPNs in vitro.
Figure 6: Pause-excitation sequences of ChAT interneurons inhibit SPNs in vivo in freely moving mice.

Similar content being viewed by others

References

  1. Graybiel, A.M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Morris, G., Arkadir, D., Nevet, A., Vaadia, E. & Bergman, H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43, 133–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Joshua, M., Adler, A., Mitelman, R., Vaadia, E. & Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci. 28, 11673–11684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hyland, B.I., Reynolds, J.N., Hay, J., Perk, C.G. & Miller, R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114, 475–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kimura, M., Rajkowski, J. & Evarts, E. Tonically discharging putamen neurons exhibit set-dependent responses. Proc. Natl. Acad. Sci. USA 81, 4998–5001 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Apicella, P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci. 30, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Aosaki, T. et al. Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J. Neurosci. 14, 3969–3984 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aosaki, T., Kimura, M. & Graybiel, A.M. Temporal and spatial characteristics of tonically active neurons of the primate's striatum. J. Neurophysiol. 73, 1234–1252 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Tecuapetla, F., Koos, T., Tepper, J.M., Kabbani, N. & Yeckel, M.F. Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J. Neurosci. 29, 8977–8990 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pearce, R.A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Banks, M.I., Li, T.B. & Pearce, R.A. The synaptic basis of GABAA,slow . J. Neurosci. 18, 1305–1317 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamás, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902–1905 (2003).

    Article  PubMed  Google Scholar 

  14. Karayannis, T. et al. Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J. Neurosci. 30, 9898–9909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szabadics, J., Tamas, G. & Soltesz, I. Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast . Proc. Natl. Acad. Sci. USA 104, 14831–14836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banks, M.I., White, J.A. & Pearce, R.A. Interactions between distinct GABAA circuits in hippocampus. Neuron 25, 449–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Overstreet, L.S., Jones, M.V. & Westbrook, G.L. Slow desensitization regulates the availability of synaptic GABAA receptors. J. Neurosci. 20, 7914–7921 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ibáñez-Sandoval, O. et al. A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J. Neurosci. 31, 16757–16769 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J. & Kreitzer, A.C. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci. 30, 2223–2234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Capogna, M. & Pearce, R.A. GABAA,slow: causes and consequences. Trends Neurosci. 34, 101–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Hill, J.A. Jr., Zoli, M., Bourgeois, J.P. & Changeux, J.P. Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J. Neurosci. 13, 1551–1568 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koós, T. & Tepper, J.M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2, 467–472 (1999).

    Article  PubMed  Google Scholar 

  23. Koós, T. & Tepper, J.M. Dual cholinergic control of fast-spiking interneurons in the neostriatum. J. Neurosci. 22, 529–535 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chang, H.T. & Kita, H. Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res. 574, 307–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan, M.A., Chen, H. & Morikawa, H. Recurrent inhibitory network among striatal cholinergic interneurons. J. Neurosci. 28, 8682–8690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding, J.B., Guzman, J.N., Peterson, J.D., Goldberg, J.A. & Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67, 294–307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giniatullin, R., Nistri, A. & Yakel, J.L. Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 28, 371–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, C.J. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 45, 575–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Apicella, P., Ravel, S., Sardo, P. & Legallet, E. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J. Neurophysiol. 80, 3341–3344 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Witten, I.B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oláh, S. et al. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461, 1278–1281 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Banks, M.I. & Pearce, R.A. Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J. Neurosci. 20, 937–948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wonnacott, S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 20, 92–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. McGehee, D.S., Heath, M.J., Gelber, S., Devay, P. & Role, L.W. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269, 1692–1696 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. De Rover, M., Lodder, J.C., Schoffelmeer, A.N. & Brussaard, A.B. Intermittent morphine treatment induces a long-lasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats. Synapse 55, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kubota, Y., Mikawa, S. & Kawaguchi, Y. Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. Neuroreport 5, 205–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Ibáñez-Sandoval, O. et al. Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase–expressing neurons in adult mouse striatum. J. Neurosci. 30, 6999–7016 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berke, J.D. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. Eur. J. Neurosci. 30, 848–859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, F.M., Liang, Y. & Dani, J.A. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci. 4, 1224–1229 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rice, M.E. & Cragg, S.J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 7, 583–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto, N., Minamimoto, T., Graybiel, A.M. & Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol. 61, 814–832 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Kataoka, Y. et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol. 518, 277–291 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leckman, J.F., Vaccarino, F.M., Kalanithi, P.S. & Rothenberger, A. Annotation: Tourette syndrome: a relentless drumbeat driven by misguided brain oscillations. J. Child Psychol. Psychiatry 47, 537–550 (2006).

    Article  PubMed  Google Scholar 

  47. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yáñez-Muñoz, R.J. et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12, 348–353 (2006).

    Article  PubMed  Google Scholar 

  49. Jog, M.S. et al. Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117, 141–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Berke, J.D. Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. J. Neurosci. 28, 10075–10080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Berlin for confocal microscopy, L. Zaborszky for providing ChAT-EGFP mice, R. Yanez-Munoz for providing integration deficient pCMV-dR8.74-D64V plasmid DNA and for advice regarding virus production, N. Altan-Bonnet, W. Friedman and Haesun Kim for generously providing access to an ultracentrifuge facility and other equipment in their laboratories, C.T. Unal and A. Kreitzer for valuable discussion, A. Berenyi, S. Fujisawa and M. Vandecasteele for advice regarding in vivo recording methods, H. Xenias for help with confocal imaging, F. Shah for help with immunocytochemical procedures and other technical assistance, and I. Tadros for virus injections. The research was supported by US National Institutes of Health grant NS072950 and a Busch Biomedical Research Grant of Rutgers University to T.K., US National Institutes of Health grant NS034865 to J.M.T. and Rutgers University funds.

Author information

Authors and Affiliations

Authors

Contributions

D.F.E. carried out all of the in vivo recording experiments and data analysis, performed the majority of the in vitro experiments, and contributed to virus production, virus injections and confocal imaging (with the exception of Fig. 1a, which was produced by J. Berlin). O.I.-S. and F.T. performed the initial in vitro analysis of NPY-NGF neurons and O.I.-S. identified nicotinic synapses in these interneurons. E.S. contributed to the design of in vivo recording, optical stimulation methods and data analysis, molecular biology, and virus production. G.B. contributed to optrode design and the design and analysis of in vivo recording experiments. K.D. designed and provided constructs for optogenetic expression vectors, designed and produced the AAV5-DIO-eNpHR3.0-YFP and the AAV5-DIO-ChR2-mCherry virus vectors, and contributed to optogenetic methods. J.M.T. contributed to the development of in vitro and in vivo recording methods. T.K. performed in vitro recordings, recombinant DNA procedures and lentivirus production. The study was designed by T.K., J.M.T. and D.F.E. and the manuscript was written by T.K. with substantial contributions from D.F.E. and J.M.T. and input from all of the authors.

Corresponding author

Correspondence to Tibor Koos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

English, D., Ibanez-Sandoval, O., Stark, E. et al. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15, 123–130 (2012). https://doi.org/10.1038/nn.2984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing