Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles

Abstract

The thalamic reticular nucleus (TRN) is hypothesized to regulate neocortical rhythms and behavioral states. Using optogenetics and multi-electrode recording in behaving mice, we found that brief selective drive of TRN switched the thalamocortical firing mode from tonic to bursting and generated state-dependent neocortical spindles. These findings provide causal support for the involvement of the TRN in state regulation in vivo and introduce a new model for addressing the role of this structure in behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical drive of TRN generates thalamocortical burst firing.
Figure 2: Optical drive of TRN generates neocortical spindle oscillations.

References

  1. Sherman, S.M. Nat. Neurosci. 4, 344–346 (2001).

    Article  CAS  Google Scholar 

  2. Steriade, M. Nat. Neurosci. 4, 671 (2001).

    Article  CAS  Google Scholar 

  3. Lesica, N.A. et al. PLoS Biol. 4, e209 (2006).

    Article  Google Scholar 

  4. McCormick, D.A. & Bal, T. Annu. Rev. Neurosci. 20, 185–215 (1997).

    Article  CAS  Google Scholar 

  5. McAlonan, K., Cavanaugh, J. & Wurtz, R.H. Nature 456, 391–394 (2008).

    Article  CAS  Google Scholar 

  6. Espinosa, F., Torres-Vega, M.A., Marks, G.A. & Joho, R.H. J. Neurosci. 28, 5570–5581 (2008).

    Article  CAS  Google Scholar 

  7. Steriade, M., Domich, L., Oakson, G. & Deschenes, M. J. Neurophysiol. 57, 260–273 (1987).

    Article  CAS  Google Scholar 

  8. Dang-Vu, T.T., McKinney, S.M., Buxton, O.M., Solet, J.M. & Ellenbogen, J.M. Curr. Biol. 20, R626–R627 (2010).

    Article  CAS  Google Scholar 

  9. Sirota, A., Csicsvari, J., Buhl, D. & Buzsaki, G. Proc. Natl. Acad. Sci. USA 100, 2065–2069 (2003).

    Article  CAS  Google Scholar 

  10. Sohal, V.S., Pangratz-Fuehrer, S., Rudolph, U. & Huguenard, J.R. J. Neurosci. 26, 4247–4255 (2006).

    Article  CAS  Google Scholar 

  11. Bezdudnaya, T. et al. Neuron 49, 421–432 (2006).

    Article  CAS  Google Scholar 

  12. Contreras, D., Destexhe, A., Sejnowski, T.J. & Steriade, M. J. Neurosci. 17, 1179–1196 (1997).

    Article  CAS  Google Scholar 

  13. Nir, Y. et al. Neuron 70, 153–169 (2011).

    Article  CAS  Google Scholar 

  14. Li, B., Funke, K., Worgotter, F. & Eysel, U.T. J. Physiol. (Lond.) 514, 857–874 (1999).

    Article  CAS  Google Scholar 

  15. Ferrarelli, F. et al. Am. J. Psychiatry 167, 1339–1348 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a US National Institutes of Health award (R01 NS045130-05) to C.I.M.

Author information

Authors and Affiliations

Authors

Contributions

M.H., J.S. and C.I.M. designed the experiments and analyses. M.H. and J.S. conducted the experiments and analyses. J.T. and G.F. developed the transgenic model. J.S. and J.R. developed the optics-integrated chronic implants. M.H., J.S. and C.I.M. wrote the manuscript. C.I.M. supervised the project.

Corresponding authors

Correspondence to Guoping Feng or Christopher I Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Materials and Methods (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halassa, M., Siegle, J., Ritt, J. et al. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 14, 1118–1120 (2011). https://doi.org/10.1038/nn.2880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing