Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II

Abstract

Transcription of immediate early genes (IEGs) in neurons is highly sensitive to neuronal activity, but the mechanism underlying these early transcription events is largely unknown. We found that several IEGs, such as Arc (also known as Arg3.1), are poised for near-instantaneous transcription by the stalling of RNA polymerase II (Pol II) just downstream of the transcription start site in rat neurons. Depletion through RNA interference of negative elongation factor, a mediator of Pol II stalling, reduced the Pol II occupancy of the Arc promoter and compromised the rapid induction of Arc and other IEGs. In contrast, reduction of Pol II stalling did not prevent transcription of IEGs that were expressed later and largely lacked promoter-proximal Pol II stalling. Together, our data strongly indicate that the rapid induction of neuronal IEGs requires poised Pol II and suggest a role for this mechanism in a wide variety of transcription-dependent processes, including learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TTX withdrawal effectively induces rapid Arc transcription.
Figure 2: RNA Pol II is enriched at the Arc TSS.
Figure 3: Activity promotes Pol II escape from stalling into productive elongation.
Figure 4: Arc Pol II stalling and NELF.
Figure 5: Identifying other IEGs.
Figure 6: Pol II is enriched near all rapid IEG promoters.
Figure 7: Pol II stalling mediates immediate transcription of several IEGs.
Figure 8: Poised Pol II is found in vivo.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Frey, U., Krug, M., Brodemann, R., Reymann, K. & Matthies, H. Long-term potentiation induced in dendrites separated from rat's CA1 pyramidal somata does not establish a late phase. Neurosci. Lett. 97, 135–139 (1989).

    Article  CAS  Google Scholar 

  2. Kauderer, B.S. & Kandel, E.R. Capture of a protein synthesis-dependent component of long-term depression. Proc. Natl. Acad. Sci. USA 97, 13342–13347 (2000).

    Article  CAS  Google Scholar 

  3. Frey, U., Frey, S. & Schollmeier, F. Krug, M. Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. (Lond.) 490, 703–711 (1996).

    Article  CAS  Google Scholar 

  4. Nguyen, P.V., Abel, T. & Kandel, E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107 (1994).

    Article  CAS  Google Scholar 

  5. Messaoudi, E., Ying, S.W., Kanhema, T., Croll, S.D. & Bramham, C.R. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 22, 7453–7461 (2002).

    Article  CAS  Google Scholar 

  6. Lyford, G.L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  Google Scholar 

  7. Link, W. et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738 (1995).

    Article  CAS  Google Scholar 

  8. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. & Worley, P.F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124 (1999).

    Article  CAS  Google Scholar 

  9. Ramírez-Amaya, V. et al. Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J. Neurosci. 25, 1761–1768 (2005).

    Article  Google Scholar 

  10. Guzowski, J.F., Setlow, B., Wagner, E.K. & McGaugh, J.L. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098 (2001).

    Article  CAS  Google Scholar 

  11. Miyashita, T., Kubik, S., Haghighi, N., Steward, O. & Guzowski, J.F. Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience. J. Neurosci. 29, 898–906 (2009).

    Article  CAS  Google Scholar 

  12. Zou, Z. & Buck, L.B. Combinatorial effects of odorant mixes in olfactory cortex. Science 311, 1477–1481 (2006).

    Article  CAS  Google Scholar 

  13. Saha, R.N. & Dudek, S.M. Action potentials: to the nucleus and beyond. Exp. Biol. Med. (Maywood) 233, 385–393 (2008).

    Article  CAS  Google Scholar 

  14. Hardingham, G.E., Chawla, S., Johnson, C.M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260–265 (1997).

    Article  CAS  Google Scholar 

  15. Adams, J.P. & Dudek, S.M. Late-phase long-term potentiation: getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743 (2005).

    Article  CAS  Google Scholar 

  16. West, A.E., Griffith, E.C. & Greenberg, M.E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002).

    Article  CAS  Google Scholar 

  17. Thompson, K.R. et al. Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron 44, 997–1009 (2004).

    CAS  PubMed  Google Scholar 

  18. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  CAS  Google Scholar 

  19. Gilmour, D.S. & Lis, J.T. RNA polymerase II interacts with the promoter region of the non-induced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984–3989 (1986).

    Article  CAS  Google Scholar 

  20. Rougvie, A.E. & Lis, J.T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    Article  CAS  Google Scholar 

  21. Boettiger, A.N. & Levine, M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471–473 (2009).

    Article  CAS  Google Scholar 

  22. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    Article  CAS  Google Scholar 

  23. Nechaev, S. & Adelman, K. Promoter-proximal Pol II: when stalling speeds things up. Cell Cycle 7, 1539–1544 (2008).

    Article  CAS  Google Scholar 

  24. Muse, G.W. et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 39, 1507–1511 (2007).

    Article  CAS  Google Scholar 

  25. Rao, V.R. et al. AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat. Neurosci. 9, 887–895 (2006).

    Article  CAS  Google Scholar 

  26. Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).

    Article  CAS  Google Scholar 

  27. Margaritis, T. & Holstege, F.C. Poised RNA polymerase II gives pause for thought. Cell 133, 581–584 (2008).

    Article  CAS  Google Scholar 

  28. Peterlin, B.M. & Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    Article  CAS  Google Scholar 

  29. Chao, S.H. et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 275, 28345–28348 (2000).

    Article  CAS  Google Scholar 

  30. Narita, T. et al. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol. Cell. Biol. 23, 1863–1873 (2003).

    Article  CAS  Google Scholar 

  31. Yamaguchi, Y., Inukai, N., Narita, T., Wada, T. & Handa, H. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell. Biol. 22, 2918–2927 (2002).

    Article  CAS  Google Scholar 

  32. Wu, C.H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003).

    Article  CAS  Google Scholar 

  33. Adelman, K. et al. Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc. Natl. Acad. Sci. USA 106, 18207–18212 (2009).

    Article  CAS  Google Scholar 

  34. Sun, J. et al. Deregulation of cofactor of BRCA1 expression in breast cancer cells. J. Cell. Biochem. 103, 1798–1807 (2008).

    Article  CAS  Google Scholar 

  35. Kim, T.K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  Google Scholar 

  36. Aiyar, S.E., Blair, A.L., Hopkinson, D.A., Bekiranov, S. & Li, R. Regulation of clustered gene expression by cofactor of BRCA1 (COBRA1) in breast cancer cells. Oncogene 26, 2543–2553 (2007).

    Article  CAS  Google Scholar 

  37. Gilchrist, D.A. et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921–1933 (2008).

    Article  CAS  Google Scholar 

  38. Aida, M. et al. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol. Cell. Biol. 26, 6094–6104 (2006).

    Article  CAS  Google Scholar 

  39. Coulon, V. et al. A novel calcium signaling pathway targets the c-fos intragenic transcriptional pausing site. J. Biol. Chem. 274, 30439–30446 (1999).

    Article  CAS  Google Scholar 

  40. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  Google Scholar 

  41. Giorgi, C. et al. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130, 179–191 (2007).

    Article  CAS  Google Scholar 

  42. Frey, U. & Morris, R.G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  Google Scholar 

  43. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  44. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  45. Chen, Y. et al. NS21: re-defined and modified supplement B27 for neuronal cultures. J. Neurosci. Methods 171, 239–247 (2008).

    Article  CAS  Google Scholar 

  46. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Armstrong, P. Wade and members of the Dudek laboratory for critical review of the manuscript, the National Institute of Environmental Health Sciences (NIEHS) Viral Vector Core for lentivirus preparations, the NIEHS Microarray Core for generating, processing and analyzing microarray data, the US National Institutes of Health Intramural Sequencing Center for ChIP-seq sample preparations and sequencing, and the NIEHS Imaging Center for assistance with confocal imaging. This research was supported by the Intramural Research Program of the US National Institutes of Health, NIEHS (Z01 ES100221 to S.M.D. and Z01 ES101987 to K.A.).

Author information

Authors and Affiliations

Authors

Contributions

R.N.S. and S.M.D. conceived and designed the study. Experiments were conducted by R.N.S., E.R.B., E.M.W., M.Z., J.-y.H., J.D.F. and K.R.D. Data analysis was performed by R.N.S., E.R.B., E.M.W. and M.Z. Bioinformatics analyses were performed by D.C.F. K.A. provided statistical analyses and technical and conceptual advice. R.N.S. and S.M.D. wrote the manuscript with input from E.M.W., E.R.B., D.C.F. and K.A.

Corresponding author

Correspondence to Serena M Dudek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, R., Wissink, E., Bailey, E. et al. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat Neurosci 14, 848–856 (2011). https://doi.org/10.1038/nn.2839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing