Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy

Abstract

Polyamines are endogenous molecules involved in cell damage following neurological insults, although it is unclear whether polyamines reduce or exacerbate this damage. We used a developmental seizure model in which we exposed Xenopus laevis tadpoles to pentylenetetrazole (PTZ), a known convulsant. We found that, after an initial PTZ exposure, seizure onset times were delayed in response to a second PTZ exposure 4 h later. This protective effect was a result of activity-dependent increases in synthesis of putrescine, the simplest polyamine. Unlike more complex polyamines that directly modulate ion channels, putrescine exerted its effect by altering the balance of excitation to inhibition. Tectal neuron recordings, 4 h after the initial seizure, revealed an elevated frequency of GABAergic spontaneous inhibitory postsynaptic currents. Our data suggest that this effect is mediated by an atypical pathway that converts putrescine into GABA, which then activates presynaptic GABAB receptors. Our data suggest that polyamines have a previously unknown neuroprotective role in the developing brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PTZ-induced seizures alter the onset latency of subsequent seizures.
Figure 2: Increases in putrescine levels delay seizure onset.
Figure 3: PTZ-induced seizures occur in the optic tectum, but do not alter many of the intrinsic and synaptic properties of tectal neurons.
Figure 4: Priming seizures and direct putrescine administration both increase GABA spontaneous frequency in tectal neurons.
Figure 5: Putrescine converts to GABA in substantial quantities after a seizure.
Figure 6: Disruption of GABABRs by the GABABR antagonist CGPb in conjunction with priming seizures causes decreases in seizure onset latencies.
Figure 7: GABABRs are a likely target of putrescine-converted GABA.
Figure 8: Blocking putrescine production during a seizure results in long-term damage.

Similar content being viewed by others

References

  1. Cowan, L.D. The epidemiology of the epilepsies in children. Ment. Retard. Dev. Disabil. Res. Rev. 8, 171–181 (2002).

    Article  Google Scholar 

  2. Scharfman, H.E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 7, 348–354 (2007).

    Article  CAS  Google Scholar 

  3. Williams, K. Interactions of polyamines with ion channels. Biochem. J. 325, 289–297 (1997).

    Article  CAS  Google Scholar 

  4. Tabor, C.W. & Tabor, H. Polyamines. Annu. Rev. Biochem. 53, 749–790 (1984).

    Article  CAS  Google Scholar 

  5. Lerma, J. Spermine regulates N-methyl-D-aspartate receptor desensitization. Neuron 8, 343–352 (1992).

    Article  CAS  Google Scholar 

  6. Williams, K. Modulation and block of ion channels: a new biology of polyamines. Cell. Signal. 9, 1–13 (1997).

    Article  CAS  Google Scholar 

  7. Osawa, M. et al. Evidence for the direct interaction of spermine with inwardly rectifying potassium channel. J. Biol. Chem. 284, 26117–26126 (2009).

    Article  CAS  Google Scholar 

  8. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  Google Scholar 

  9. Zawia, N.H. & Bondy, S.C. Electrically stimulated rapid gene expression in the brain: ornithine decarboxylase and c-fos. Brain Res. Mol. Brain Res. 7, 243–247 (1990).

    Article  CAS  Google Scholar 

  10. Pegg, A.E. Regulation of ornithine decarboxylase. J. Biol. Chem. 281, 14529–14532 (2006).

    Article  CAS  Google Scholar 

  11. Gilad, G.M. & Gilad, V.H. Polyamine biosynthesis is required for survival of sympathetic neurons after axonal injury. Brain Res. 273, 191–194 (1983).

    Article  CAS  Google Scholar 

  12. Aizenman, C.D., Munoz-Elias, G. & Cline, H.T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Article  CAS  Google Scholar 

  13. Shin, J., Shen, F. & Huguenard, J. PKC and polyamine modulation of GluR2-deficient AMPA receptors in immature neocortical pyramidal neurons of the rat. J. Physiol. (Lond.) 581, 679–691 (2007).

    Article  Google Scholar 

  14. Hayashi, Y., Hattori, Y., Moriwaki, A., Lu, Y.F. & Hori, Y. Increases in brain polyamine concentrations in chemical kindling and single convulsion induced by pentylenetetrazol in rats. Neurosci. Lett. 149, 63–66 (1993).

    Article  CAS  Google Scholar 

  15. Camón, L., de Vera, N. & Martinez, E. Polyamine metabolism and glutamate receptor agonists-mediated excitotoxicity in the rat brain. J. Neurosci. Res. 66, 1101–1111 (2001).

    Article  Google Scholar 

  16. de Vera, N., Camon, L. & Martinez, E. Cerebral distribution of polyamines in kainic acid–induced models of status epilepticus and ataxia in rats. Overproduction of putrescine and histological damage. Eur. Neuropsychopharmacol. 12, 397–405 (2002).

    Article  CAS  Google Scholar 

  17. Najm, I. et al. Seizure activity-induced changes in polyamine metabolism and neuronal pathology during the postnatal period in rat brain. Brain Res. Dev. Brain Res. 69, 11–21 (1992).

    Article  CAS  Google Scholar 

  18. Paschen, W. Polyamine metabolism in different pathological states of the brain. Mol. Chem. Neuropathol. 16, 241–271 (1992).

    Article  CAS  Google Scholar 

  19. de Vera, N., Martinez, E. & Sanfeliu, C. Spermine induces cell death in cultured human embryonic cerebral cortical neurons through N-methyl-D-aspartate receptor activation. J. Neurosci. Res. 86, 861–872 (2008).

    Article  CAS  Google Scholar 

  20. Halonen, T. et al. Elevated seizure threshold and impaired spatial learning in transgenic mice with putrescine overproduction in the brain. Eur. J. Neurosci. 5, 1233–1239 (1993).

    Article  CAS  Google Scholar 

  21. Shimosato, K., Watanabe, S., Marley, R.J. & Saito, T. Increased polyamine levels and changes in the sensitivity to convulsions during chronic treatment with cocaine in mice. Brain Res. 684, 243–247 (1995).

    Article  CAS  Google Scholar 

  22. Kaasinen, S.K., Grohn, O.H., Keinanen, T.A., Alhonen, L. & Janne, J. Overexpression of spermidine/spermine N1-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. Exp. Neurol. 183, 645–652 (2003).

    Article  CAS  Google Scholar 

  23. Baraban, S.C., Taylor, M.R., Castro, P.A. & Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131, 759–768 (2005).

    Article  CAS  Google Scholar 

  24. Hewapathirane, D.S. & Haas, K. Single cell electroporation in vivo within the intact developing brain. J. Vis. Exp. published online, doi:10.3791/705 (11 July 2008).

  25. Aizenman, C.D., Akerman, C.J., Jensen, K.R. & Cline, H.T. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. Neuron 39, 831–842 (2003).

    Article  CAS  Google Scholar 

  26. Fleidervish, I.A., Libman, L., Katz, E. & Gutnick, M.J. Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA 105, 18994–18999 (2008).

    Article  CAS  Google Scholar 

  27. Akerman, C.J. & Cline, H.T. Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. J. Neurosci. 26, 5117–5130 (2006).

    Article  CAS  Google Scholar 

  28. Sequerra, E.B., Gardino, P., Hedin-Pereira, C. & de Mello, F.G. Putrescine as an important source of GABA in the postnatal rat subventricular zone. Neuroscience 146, 489–493 (2007).

    Article  CAS  Google Scholar 

  29. Noto, T., Hashimoto, H., Nakao, J., Kamimura, H. & Nakajima, T. Spontaneous release of gamma-aminobutyric acid formed from putrescine and its enhanced Ca2+-dependent release by high K+ stimulation in the brains of freely moving rats. J. Neurochem. 46, 1877–1880 (1986).

    Article  CAS  Google Scholar 

  30. Yamasaki, E.N., Barbosa, V.D., De Mello, F.G. & Hokoc, J.N. GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development. Int. J. Dev. Neurosci. 17, 201–213 (1999).

    Article  CAS  Google Scholar 

  31. Laschet, J., Grisar, T., Bureau, M. & Guillaume, D. Characteristics of putrescine uptake and subsequent GABA formation in primary cultured astrocytes from normal C57BL/6J and epileptic DBA/2J mouse brain cortices. Neuroscience 48, 151–157 (1992).

    Article  CAS  Google Scholar 

  32. Seiler, N. Catabolism of polyamines. Amino Acids 26, 217–233 (2004).

    CAS  PubMed  Google Scholar 

  33. Seiler, N. & Al-Therib, M.J. Putrescine catabolism in mammalian brain. Biochem. J. 144, 29–35 (1974).

    Article  CAS  Google Scholar 

  34. Pitler, T.A. & Alger, B.E. Differences between presynaptic and postsynaptic GABAB mechanisms in rat hippocampal pyramidal cells. J. Neurophysiol. 72, 2317–2327 (1994).

    Article  CAS  Google Scholar 

  35. Pitler, T.A. & Alger, B.E. Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13, 1447–1455 (1994).

    Article  CAS  Google Scholar 

  36. Pearce, R.A., Grunder, S.D. & Faucher, L.D. Different mechanisms for use-dependent depression of two GABAA-mediated IPSCs in rat hippocampus. J. Physiol. (Lond.) 484, 425–435 (1995).

    Article  CAS  Google Scholar 

  37. Haas, K.Z., Sperber, E.F., Moshe, S.L. & Stanton, P.K. Kainic acid-induced seizures enhance dentate gyrus inhibition by downregulation of GABA(B) receptors. J. Neurosci. 16, 4250–4260 (1996).

    Article  CAS  Google Scholar 

  38. Hayashi, Y., Hattori, Y. & Hori, Y. Involvement of putrescine in the development of kindled seizure in rats. J. Neurochem. 58, 562–566 (1992).

    Article  CAS  Google Scholar 

  39. Schousboe, A. Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem. Res. 25, 1241–1244 (2000).

    Article  CAS  Google Scholar 

  40. Haas, K.Z., Sperber, E.F., Opanashuk, L.A., Stanton, P.K. & Moshe, S.L. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus 11, 615–625 (2001).

    Article  CAS  Google Scholar 

  41. Liu, Z. et al. Consequences of recurrent seizures during early brain development. Neuroscience 92, 1443–1454 (1999).

    Article  CAS  Google Scholar 

  42. Zawia, N.H. & Harry, G.J. Correlations between developmental ornithine decarboxylase gene expression and enzyme activity in the rat brain. Brain Res. Dev. Brain Res. 71, 53–57 (1993).

    Article  CAS  Google Scholar 

  43. Shin, J., Shen, F. & Huguenard, J.R. Polyamines modulate AMPA receptor-dependent synaptic responses in immature layer V pyramidal neurons. J. Neurophysiol. 93, 2634–2643 (2005).

    Article  CAS  Google Scholar 

  44. Sankar, R., Shin, D.H. & Wasterlain, C.G. GABA metabolism during status epilepticus in the developing rat brain. Brain Res. Dev. Brain Res. 98, 60–64 (1997).

    Article  CAS  Google Scholar 

  45. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (Garland Publishing, New York, 1956).

  46. Wu, G., Malinow, R. & Cline, H.T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    Article  CAS  Google Scholar 

  47. Pratt, K.G. & Aizenman, C.D. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit. J. Neurosci. 27, 8268–8277 (2007).

    Article  CAS  Google Scholar 

  48. Clements, J.D. & Bekkers, J.M. Detection of spontaneous synaptic events with an optimally scaled template. Biophys. J. 73, 220–229 (1997).

    Article  CAS  Google Scholar 

  49. Kamboj, S.K., Swanson, G.T. & Cull-Candy, S.G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Connors and J. Kauer with helpful discussion and suggestions to the manuscript. We also thank I. Sears, B. Clarkson and E. Stackpole for technical support and J. Lippman Bell for editorial support. This work was supported by the American Heart Association and the US National Institutes of Health. C.D.A. was also supported by the Klingenstein Fund, M.R.B. by a Graduate Research Fellowship Program award from the National Science Foundation, J.A.B. by a Brain Science Siravo Award for Epilepsy Research and H.F.J. by a Brown University Undergraduate Teaching and Research Award.

Author information

Authors and Affiliations

Authors

Contributions

M.R.B. conducted the experiments and wrote the manuscript. J.A.B. contributed to the behavioral testing. H.F.J. contributed to the behavioral testing and the ELISA. C.D.A. supervised the project and edited the manuscript.

Corresponding author

Correspondence to Carlos D Aizenman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 162 kb)

Supplementary Movie 1

Xenopus tapole induced PTZ seizures. (MOV 4731 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, M., Belarde, J., Johnson, H. et al. A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy. Nat Neurosci 14, 505–512 (2011). https://doi.org/10.1038/nn.2777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing