Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PI3Kγ is required for NMDA receptor–dependent long-term depression and behavioral flexibility

Abstract

Phosphatidylinositol 3-kinase (PI3K) has been implicated in synaptic plasticity and other neural functions in the brain. However, the role of individual PI3K isoforms in the brain is unclear. We investigated the role of PI3Kγ in hippocampal-dependent synaptic plasticity and cognitive functions. We found that PI3Kγ has a crucial and specific role in NMDA receptor (NMDAR)-mediated synaptic plasticity at mouse Schaffer collateral–commissural synapses. Both genetic deletion and pharmacological inhibition of PI3Kγ disrupted NMDAR long-term depression (LTD) while leaving other forms of synaptic plasticity intact. Accompanying this physiological deficit, the impairment of NMDAR LTD by PI3Kγ blockade was specifically correlated with deficits in behavioral flexibility. These findings suggest that a specific PI3K isoform, PI3Kγ, is critical for NMDAR LTD and some forms of cognitive function. Thus, individual isoforms of PI3Ks may have distinct roles in different types of synaptic plasticity and may therefore influence various kinds of behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic and intrinsic properties of CA1 neurons in wild-type and Pik3cg−/− mice.
Figure 2: NMDAR LTD is absent in Pik3cg−/− mice.
Figure 3: NMDAR LTD is blocked by pharmacological inhibition of PI3Kγ.
Figure 4: Specificity of PI3Kγ in the induction of NMDAR LTD.
Figure 5: Recovery of NMDAR LTD impairment in Pik3cg−/− mice.
Figure 6: Signaling mechanisms involved in PI3Kγ-mediated NMDAR LTD.
Figure 7: Behavioral flexibility is reduced in Pik3cg−/− mice.

Similar content being viewed by others

References

  1. Dhand, R. et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 13, 522–533 (1994).

    Article  CAS  Google Scholar 

  2. Bondev, A., Rubio, I. & Wetzker, R. Differential regulation of lipid and protein kinase activities of phosphoinositide 3-kinase gamma in vitro. Biol. Chem. 380, 1337–1340 (1999).

    Article  CAS  Google Scholar 

  3. Toker, A. & Cantley, L.C. Signaling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).

    Article  CAS  Google Scholar 

  4. Carpenter, C.L. & Cantley, L.C. Phosphoinositide kinases. Curr. Opin. Cell Biol. 8, 153–158 (1996).

    Article  CAS  Google Scholar 

  5. Oudit, G.Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell Cardiol. 37, 449–471 (2004).

    Article  CAS  Google Scholar 

  6. Wymann, M.P. & Pirola, L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127–150 (1998).

    Article  CAS  Google Scholar 

  7. Hawkins, P.T., Anderson, K.E., Davidson, K. & Stephens, L.R. Signaling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34, 647–662 (2006).

    Article  CAS  Google Scholar 

  8. Rückle, T., Schwarz, M.K. & Rommel, C. PI3Kγ inhibition: towards an 'aspirin of the 21st century'? Nat. Rev. Drug Discov. 5, 903–918 (2006).

    Article  Google Scholar 

  9. Kerfant, B.G., Rose, R.A., Sun, H. & Backx, P.H. Phosphoinositide 3-kinase gamma regulates cardiac contractility by locally controlling cyclic adenosine monophosphate levels. Trends Cardiovasc. Med. 16, 250–256 (2006).

    Article  CAS  Google Scholar 

  10. Kang, H., Chang, W., Hurley, M., Vignery, A. & Wu, D. Important roles of PI3Kγ in osteoclastogenesis and bone homeostasis. Proc. Natl. Acad. Sci. USA 107, 12901–12906 (2010).

    Article  CAS  Google Scholar 

  11. Hayer, S. et al. PI3Kγ regulates cartilage damage in chronic inflammatory arthritis. FASEB J. 23, 4288–4298 (2009).

    Article  CAS  Google Scholar 

  12. Kelly, A. & Lynch, M.A. Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology 39, 643–651 (2000).

    Article  CAS  Google Scholar 

  13. Sanna, P.P. et al. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22, 3359–3365 (2002).

    Article  CAS  Google Scholar 

  14. Opazo, P., Watabe, A.M., Grant, S.G.N. & O'Dell, T.J. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal–related kinase-independent mechanisms. J. Neurosci. 23, 3679–3688 (2003).

    Article  CAS  Google Scholar 

  15. Horwood, J.M., Dufour, F., Laroche, S. & Davis, S. Signaling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur. J. Neurosci. 23, 3375–3384 (2006).

    Article  Google Scholar 

  16. Ran, I. et al. Persistent transcription- and translation-dependent long-term potentiation induced by mGluR1 in hippocampal interneurons. J. Neurosci. 29, 5605–5615 (2009).

    Article  CAS  Google Scholar 

  17. Lin, C.H. et al. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31, 841–851 (2001).

    Article  CAS  Google Scholar 

  18. Hou, L. & Klann, E. Activation of the phosphoinositide 3-kinase-akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 24, 6352–6361 (2004).

    Article  CAS  Google Scholar 

  19. Daw, M.I. et al. Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nat. Neurosci. 5, 835–836 (2002).

    Article  CAS  Google Scholar 

  20. van der Heide, L.P., Kamal, A., Artola, A., Gispen, W.H. & Ramakers, G.M.J. Insulin modulates hippocampal activity–dependent synaptic plasticity in a N-methyl-D-aspartate receptor and phosphatidyl-inositol-3-kinase–dependent manner. J. Neurochem. 94, 1158–1166 (2005).

    Article  CAS  Google Scholar 

  21. Selbach, O. et al. Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiol. (Oxf) 198, 277–285 (2009).

    Article  Google Scholar 

  22. Chen, X. et al. PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat. Neurosci. 8, 925–931 (2005).

    Article  CAS  Google Scholar 

  23. Mizuno, M. et al. Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol. Psychiatry 8, 217–224 (2003).

    Article  CAS  Google Scholar 

  24. Barros, D.M. et al. LY294002, an inhibitor of phosphoinositide 3-kinase given into rat hippocampus impairs acquisition, consolidation and retrieval of memory for one-trial step-down inhibitory avoidance. Behav. Pharmacol. 12, 629–634 (2001).

    Article  CAS  Google Scholar 

  25. Bartlett, S.E., Reynolds, A.J., Tan, T., Heydon, K. & Hendry, I.A. Differential mRNA expression and subcellular locations of PI3-kinase isoforms in sympathetic and sensory neurons. J. Neurosci. Res. 56, 44–53 (1999).

    Article  CAS  Google Scholar 

  26. Bernstein, H.G., Keilhoff, C., Reiser, M., Freese, S. & Wetzker, R. Tissue distribution and subcellular localization of a G protein–activated phosphoinositide 3-kinase. An immunohistochemical study. Cell Mol Biol. 44, 973–983 (1998).

    CAS  PubMed  Google Scholar 

  27. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  Google Scholar 

  28. Liu, L. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024 (2004).

    Article  CAS  Google Scholar 

  29. Zhuo, M. Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol Brain 2, 4 (2009).

    Article  Google Scholar 

  30. Camps, M. et al. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936–943 (2005).

    Article  CAS  Google Scholar 

  31. Hansel, C., Linden, D.J. & D'Angelo, E. Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nat. Neurosci. 4, 467–475 (2001).

    Article  CAS  Google Scholar 

  32. Peineau, S. et al. LTP inhibits LTD in the hippocampus via regulation of GSK3 beta. Neuron 53, 703–717 (2007).

    Article  CAS  Google Scholar 

  33. Peineau, S. et al. A systematic investigation of the protein kinases involved in NMDA receptor–dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. Mol Brain 2, 22 (2009).

    Article  Google Scholar 

  34. Hayakawa, M. et al. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110α inhibitors. Bioorg. Med. Chem. 14, 6847–6858 (2006).

    Article  CAS  Google Scholar 

  35. Morishita, W. et al. N-ethylmaleimide blocks depolarization-induced suppression of inhibition and enhances GABA release in the rat hippocampal slice in vitro. J. Neurosci. 17, 941–950 (1997).

    Article  CAS  Google Scholar 

  36. Collingridge, G.L., Peineau, S., Howland, J.G. & Wang, Y.T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473 (2010).

    Article  CAS  Google Scholar 

  37. Zhu, J.J., Qin, Y., Zhao, M., Van Aelst, L. & Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443–455 (2002).

    Article  CAS  Google Scholar 

  38. Zhu, Y. et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46, 905–916 (2005).

    Article  CAS  Google Scholar 

  39. Bos, J.L., de Rooij, J. & Reedquist, K.A. Rap1 signaling: adhering to new models. Nat. Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  40. Yamboliev, I.A., Wiesmann, K.M., Singer, C.A., Hedges, J.C. & Gerthoffer, W.T. Phosphatidylinositol 3-kinases regulate ERK and p38 MAP kinases in canine colonic smooth muscle. Am. J. Physiol. Cell Physiol. 279, C352–C360 (2000).

    Article  CAS  Google Scholar 

  41. Nicholls, R.E. et al. Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron 58, 104–117 (2008).

    Article  CAS  Google Scholar 

  42. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signaling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  Google Scholar 

  43. Hisatsune, C., Umemori, H., Mishina, M. & Yamamoto, T. Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase. Genes Cells 4, 657–666 (1999).

    Article  CAS  Google Scholar 

  44. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  45. Etkin, A. et al. A role in learning for SRF: Deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50, 127–143 (2006).

    Article  CAS  Google Scholar 

  46. Kemp, A. & Manahan-Vaughan, D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc. Natl. Acad. Sci. USA 101, 8192–8197 (2004).

    Article  CAS  Google Scholar 

  47. Manahan-Vaughan, D. & Braunewell, K.H. Novelty acquisition is associated with induction of hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 96, 8739–8744 (1999).

    Article  CAS  Google Scholar 

  48. Wong, T.P. et al. Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc. Natl. Acad. Sci. USA 104, 11471–11476 (2007).

    Article  CAS  Google Scholar 

  49. Zeng, H. et al. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617–629 (2001).

    Article  CAS  Google Scholar 

  50. Jin, Y., Kim, S.J., Kim, J., Worley, P.F. & Linden, D.J. Long-term depression of mGluR1 signaling. Neuron 55, 277–287 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Research Initiatives Program of the Korean Ministry of Science and Technology and World Class University project. J.-I.K. and H.-R.L. are supported by a BK21 fellowship and Seoul Science fellowship. S.-E.S. and J.B. are supported by a BK21 fellowship. P.H.B. is a Career Investigator of the Heart and Stroke Foundation of Ontario and has support from a Canadian Institutes of Health Research grant (62954). B.-K.K. is a Yonam Foundation Scholar. G.L.C. and M.Z. are WCU International Scholars.

Author information

Authors and Affiliations

Authors

Contributions

J.-I.K. and H.-R.L. designed, performed and analyzed most of the electrophysiology and behavioral experiments, and wrote the manuscript. S.S., J.B., N.-K.Y., J.-H.C., H.-G.K., Y.-S.L., S.-W.P., C.K., S.-J.A., S.Y.C., H.K., K.-H.K., D.-J.J., K.L. and S.J.K. conducted the biochemical, electrophysiological and behavioral studies. Y.-S.L., P.H.B., C.A.B., D.-J.J., K.L., E.K., M.Z. and G.L.C. aided in the interpretation of data and contributed to editing the manuscript. B.-K.K. supervised the project, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Bong-Kiun Kaang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 9005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JI., Lee, HR., Sim, Se. et al. PI3Kγ is required for NMDA receptor–dependent long-term depression and behavioral flexibility. Nat Neurosci 14, 1447–1454 (2011). https://doi.org/10.1038/nn.2937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing