Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perivascular instruction of cell genesis and fate in the adult brain

Abstract

The perivascular niche for neurogenesis was first reported as the co-association of newly generated neurons and their progenitors with both dividing and mitotically quiescent endothelial cells in restricted regions of the brain in adult birds and mammals alike. This review attempts to summarize our present understanding of the interaction of blood vessels with neural stem and progenitor cells, addressing both glial and neuronal progenitor cell interactions in the perivascular niche. We review the molecular interactions that are most critical to the endothelial control of stem and progenitor cell mobilization and differentiation. The focus throughout will be on defining those perivascular ligand-receptor interactions shared among these systems, as well as those that clearly differ as a function of cell type and setting, by which specificity may be achieved in the development of targeted therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perivascular interactions within the subgranular zone of the adult mammalian hippocampus.
Figure 2: Perivascular interactions with the adult mammalian subependyma.
Figure 3: Angiogenesis and neurogenesis in the adult songbird brain.

Similar content being viewed by others

References

  1. Goldman, S.A. Adult neurogenesis: From canaries to the clinic. J. Neurobiol. 36, 267–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells, but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirschenbaum, B. et al. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4, 576–589 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Pincus, D.W. et al. Fibroblast growth factor-2/brain-derived neurotrophic factor–associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Eriksson, P.S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Roy, N.S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6, 271–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishiyama, A., Komitova, M., Suzuki, R. & Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Goldman, S.A. Stem and progenitor cell–based therapy of the human central nervous system. Nat. Biotechnol. 23, 862–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Potten, C.S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kronenberg, G. et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 467, 455–463 (2003).

    Article  PubMed  Google Scholar 

  18. Nunes, M.C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ihrie, R.A. & Alvarez-Buylla, A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70, 674–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Louissaint, A. Jr., Rao, S., Leventhal, C. & Goldman, S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S.A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ohab, J.J., Fleming, S., Blesch, A. & Carmichael, S. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bovetti, S. et al. Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J. Neurosci. 27, 5976–5980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Snapyan, M. et al. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 29, 4172–4188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Goldman, S.A. & Nottebohm, F. Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA 80, 2390–2394 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cleaver, O. & Melton, D. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 36, 827–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Schänzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248 (2004).

    Article  PubMed  Google Scholar 

  34. Licht, T. et al. Reversible modulations of neuronal plasticity by VEGF. Proc. Natl. Acad. Sci. USA 108, 5081–5086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wurmser, A.E. et al. Cell fusion–independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, R. et al. Glioblastoma stem-like cells give rise to tumor endothelium. Nature 468, 829–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, J.H. et al. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev. Biol. 302, 356–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Braun, N. et al. Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur. J. Neurosci. 17, 1355–1364 (2003).

    Article  PubMed  Google Scholar 

  39. Agresti, C. et al. Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50, 132–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Burnstock, G. Historical review: ATP as a neurotransmitter. Trends Pharmacol. Sci. 27, 166–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Packer, M.A. et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA 100, 9566–9571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, J. et al. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J. Neurosci. 25, 2366–2375 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, C. et al. Inhibition of neuronal nitric oxide synthase enhances cell proliferation in the dentate gyrus of the adrenalectomized rat. Neurosci. Lett. 309, 9–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, A., Wang, S., Cai, J., Rao, M.S. & Mattson, M.P. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol. 258, 319–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Moreno-López, B. et al. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J. Neurosci. 24, 85–95 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Torroglosa, A. et al. Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway. Stem Cells 25, 88–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Q., Ford, M.C., Lavik, E.B. & Madri, J.A. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J. Neurosci. Res. 84, 1656–1668 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Murillo-Carretero, M., Torroglosa, A., Castro, C., Villalobo, A. & Estrada, C. S-nitrosylation of the epidermal growth factor receptor: a regulatory mechanism of receptor tyrosine kinase activity. Free Radic. Biol. Med. 46, 471–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Reif, A. et al. Differential effect of endothelial nitric oxide synthase (NOS-III) on the regulation of adult neurogenesis and behavior. Eur. J. Neurosci. 20, 885–895 (2004).

    Article  PubMed  Google Scholar 

  50. Zhu, D.Y., Liu, S.H., Sun, H.S. & Lu, Y.M. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J. Neurosci. 23, 223–229 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carreira, B.P. et al. Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor. Stem Cells 28, 1219–1230 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Luo, C.X. et al. Bidirectional regulation of neurogenesis by neuronal nitric oxide synthase derived from neurons and neural stem cells. Stem Cells 28, 2041–2052 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Eyler, C.E. et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146, 53–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dawson, D.W. et al. Pigment epithelium–derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Ramírez-Castillejo, C. et al. Pigment epithelium–derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9, 331–339 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. Andreu-Agulló, C., Morante-Redolat, J.M., Delgado, A.C. & Farinas, I. Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat. Neurosci. 12, 1514–1523 (2009).

    Article  PubMed  CAS  Google Scholar 

  58. Ables, J.L., Breunig, J., Eisch, A.J. & Rakic, P. Not(ch) just development: Notch signaling in the adult brain. Nat. Rev. Neurosci. 12, 269–283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumor growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Ridgway, J. et al. Inhibition of Dll4 signaling inhibits tumor growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Klein, R., Conway, D., Parada, L.F. & Barbacid, M. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 647–656 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Young, K.M., Merson, T.D., Sotthibundhu, A., Coulson, E.J. & Bartlett, P.F. p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J. Neurosci. 27, 5146–5155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galvão, R.P., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J. Neurosci. 28, 13368–13383 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chiaramello, S. et al. BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signaling pathways. Eur. J. Neurosci. 26, 1780–1790 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Donovan, M.H., Yamaguchi, M. & Eisch, A.J. Dynamic expression of TrkB receptor protein on proliferating and maturing cells in the adult mouse dentate gyrus. Hippocampus 18, 435–439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ahmed, S., Reynolds, B.A. & Weiss, S. BDNF enhances the differentiation, but not the survival, of CNS stem cell–derived neuronal precursors. J. Neurosci. 15, 5765–5778 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kirschenbaum, B. & Goldman, S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 92, 210–214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Emsley, J.G. & Hagg, T. a6b1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp. Neurol. 183, 273–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Whitman, M.C., Fan, W., Rela, L., Rodriguez-Gil, D.J. & Greer, C.A. Blood vessels form a migratory scaffold in the rostral migratory stream. J. Comp. Neurol. 516, 94–104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kokovay, E. et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7, 163–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lim, D.A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han, Y.G. et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11, 277–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Lehtinen, M.K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Quiñones-Hinojosa, A. et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415–434 (2006).

    Article  PubMed  Google Scholar 

  77. Rasika, S., Alvarez-Buylla, A. & Nottebohm, F. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron 22, 53–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Hartog, T.E. et al. Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries. J. Neurosci. 29, 15511–15519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, D.H. et al. Testosterone-induced matrix metalloproteinase activation is a checkpoint for neuronal addition to the adult songbird brain. J. Neurosci. 28, 208–216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, L. et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J. Neurosci. 26, 5996–6003 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jin, K. et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA 98, 4710–4715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N. & Ferriero, D.M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    Article  PubMed  Google Scholar 

  85. Yamashita, T. et al. Subventricular zone–derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 26, 6627–6636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chmielnicki, E., Benraiss, A., Economides, A.N. & Goldman, S.A. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J. Neurosci. 24, 2133–2142 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Greenberg, D.A. & Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Monje, M.L. & Palmer, T. Radiation injury and neurogenesis. Curr. Opin. Neurol. 16, 129–134 (2003).

    Article  PubMed  Google Scholar 

  90. Monje, M.L., Toda, H. & Palmer, T. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Sim, F.J. et al. Complementary patterns of gene expression by adult human oligodendrocyte progenitor cells and their white matter environment. Ann. Neurol. 59, 763–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Poimenidi, E., Hatziapostolou, M. & Papadimitriou, E. Serum stimulates Pleiotrophin gene expression in an AP-1–dependent manner in human endothelial and glioblastoma cells. Anticancer Res. 29, 349–354 (2009).

    CAS  PubMed  Google Scholar 

  93. Chang, Y. et al. Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment. Proc. Natl. Acad. Sci. USA 104, 10888–10893 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arai, K. & Lo, E.H. An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J. Neurosci. 29, 4351–4355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gadea, A., Aguirre, A., Haydar, T.F. & Gallo, V. Endothelin-1 regulates oligodendrocyte development. J. Neurosci. 29, 10047–10062 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aerts, I. et al. The expression of ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (E-NPP1) is correlated with astrocytic tumor grade. Clin. Neurol. Neurosurg. 113, 224–229 (2011).

    Article  PubMed  Google Scholar 

  97. Bao, S. et al. Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Gilbertson, R.J. & Rich, J.N. Making a tumor's bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Cho, S.R. et al. Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J. Clin. Invest. 117, 2889–2902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Im, S.H. et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 169, 259–268 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Nedergaard for her comments on the manuscript and A. Benraiss and C. McClain for designing the schematics. Work discussed in the Goldman laboratory was supported by the National Institute of Neurological Disorders and Stroke (grants R37NS29813, R01NS75345 and R01NS39559) and by grants from the National Multiple Sclerosis Society, the G. Harold and Leila Y. Mathers Charitable Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the CHDI Foundation, and the New York State Stem Cell Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, S., Chen, Z. Perivascular instruction of cell genesis and fate in the adult brain. Nat Neurosci 14, 1382–1389 (2011). https://doi.org/10.1038/nn.2963

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing