Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear

Abstract

Upon retrieval, fear memories are rendered labile and prone to modification, necessitating a restabilization process of reconsolidation to persist further. This process is also crucial for modulating both strength and content of an existing memory and forms a promising therapeutic target for fear-related disorders. However, the molecular and cellular mechanism of adaptive reconsolidation still remains obscure. Here we show that retrieval of fear memory induces a biphasic temporal change in GluA2-containing AMPA-type glutamate receptor (AMPAR) membrane expression and synaptic strength in the mouse dorsal hippocampus. Blockade of retrieval-induced, regulated, GluA2-dependent endocytosis enhanced subsequent expression of fear. In addition, this blockade prevented the loss of fear response after reconsolidation-update of fear memory content in the long-term. Thus, endocytosis of GluA2-containing AMPARs allows plastic changes at the synaptic level that exerts an inhibitory constraint on memory strengthening and underlies the loss of fear response by reinterpretation of memory content during adaptive reconsolidation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrieval after contextual fear consolidation leads to endocytosis of AMPARs.
Figure 2: Endocytosis of AMPARs is specific to retrieval of a conditioned fear memory.
Figure 3: Fast retrieval-induced decrease in synaptic strength in dorsal hippocampus.
Figure 4: A biphasic wave of synaptic AMPAR levels after retrieval translates into functional synaptic changes in dorsal hippocampus.
Figure 5: AMPAR endocytosis is crucial for subsequent AMPAR membrane insertion 7 h after retrieval.
Figure 6: Retrieval-induced AMPAR endocytosis is crucial for modulating memory strength during reconsolidation.
Figure 7: Retrieval-induced AMPAR endocytosis mediates attenuation of fear memory expression by reconsolidation update.

Similar content being viewed by others

References

  1. McGaugh, J.L. Memory–a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  Google Scholar 

  2. Frankland, P.W. et al. Stability of recent and remote contextual fear memory. Learn. Mem. 13, 451–457 (2006).

    Article  Google Scholar 

  3. Lee, J.L., Milton, A.L. & Everitt, B.J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci. 26, 10051–10056 (2006).

    Article  CAS  Google Scholar 

  4. Mamiya, N. et al. Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J. Neurosci. 29, 402–413 (2009).

    Article  CAS  Google Scholar 

  5. Nader, K., Schafe, G.E. & Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    Article  CAS  Google Scholar 

  6. Przybyslawski, J., Roullet, P. & Sara, S.J. Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J. Neurosci. 19, 6623–6628 (1999).

    Article  CAS  Google Scholar 

  7. Suzuki, A. et al. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787–4795 (2004).

    Article  CAS  Google Scholar 

  8. Nader, K. & Hardt, O. A single standard for memory: the case for reconsolidation. Nat. Rev. Neurosci. 10, 224–234 (2009).

    Article  CAS  Google Scholar 

  9. Kindt, M., Soeter, M. & Vervliet, B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nat. Neurosci. 12, 256–258 (2009).

    Article  CAS  Google Scholar 

  10. Misanin, J.R., Miller, R.R. & Lewis, D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 554–555 (1968).

    Article  CAS  Google Scholar 

  11. Lee, J.L. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat. Neurosci. 11, 1264–1266 (2008).

    Article  CAS  Google Scholar 

  12. Tronson, N.C., Wiseman, S.L., Olausson, P. & Taylor, J.R. Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat. Neurosci. 9, 167–169 (2006).

    Article  CAS  Google Scholar 

  13. Gordon, W.C. & Spear, N.E. The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol. Behav. 10, 1071–1075 (1973).

    Article  CAS  Google Scholar 

  14. Lee, J.L. Reconsolidation: maintaining memory relevance. Trends Neurosci. 32, 413–420 (2009).

    Article  CAS  Google Scholar 

  15. Lee, J.L. Memory reconsolidation mediates the updating of hippocampal memory content. Front. Behav. Neurosci. 4, 168 (2010).

    Article  Google Scholar 

  16. Monfils, M.H., Cowansage, K.K., Klann, E. & LeDoux, J.E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324, 951–955 (2009).

    Article  CAS  Google Scholar 

  17. Tronson, N.C. & Taylor, J.R. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 8, 262–275 (2007).

    Article  CAS  Google Scholar 

  18. Schiller, D. et al. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463, 49–53 (2010).

    Article  CAS  Google Scholar 

  19. Matsuo, N., Reijmers, L. & Mayford, M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 319, 1104–1107 (2008).

    Article  CAS  Google Scholar 

  20. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    Article  CAS  Google Scholar 

  21. Schafe, G.E., Nader, K., Blair, H.T. & LeDoux, J.E. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24, 540–546 (2001).

    Article  CAS  Google Scholar 

  22. Alberini, C.M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28, 51–56 (2005).

    Article  CAS  Google Scholar 

  23. Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355 (2002).

    Article  CAS  Google Scholar 

  24. Lee, J.L., Everitt, B.J. & Thomas, K.L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004).

    Article  CAS  Google Scholar 

  25. Lee, S.H. et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256 (2008).

    Article  CAS  Google Scholar 

  26. Van den Oever, M.C. et al. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat. Neurosci. 11, 1053–1058 (2008).

    Article  CAS  Google Scholar 

  27. Counotte, D.S. et al. Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence. Nat. Neurosci. 14, 417–419 (2011).

    Article  CAS  Google Scholar 

  28. Carroll, R.C., Lissin, D.V., von Zastrow, M., Nicoll, R.A. & Malenka, R.C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  29. Malenka, R.C. Synaptic plasticity and AMPA receptor trafficking. Ann. NY Acad. Sci. 1003, 1–11 (2003).

    Article  CAS  Google Scholar 

  30. Fanselow, M.S. Associative vs topographical accounts of the immediate shock-freezing deficit in rats: Implications for the response selection rules governing species-specific defensive reactions. Learn. Motiv. 17, 16–39 (1986).

    Article  Google Scholar 

  31. Robertson, S.D. et al. Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J. Neurosci. 30, 11305–11316 (2010).

    Article  CAS  Google Scholar 

  32. Qiu, S., Zhao, L.F., Korwek, K.M. & Weeber, E.J. Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J. Neurosci. 26, 12943–12955 (2006).

    Article  CAS  Google Scholar 

  33. Malenka, R.C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    Article  CAS  Google Scholar 

  34. Lee, S.H., Liu, L., Wang, Y.T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002).

    Article  CAS  Google Scholar 

  35. Man, H.Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  Google Scholar 

  36. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    Article  CAS  Google Scholar 

  37. Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat. Neurosci. 9, 602–604 (2006).

    Article  CAS  Google Scholar 

  38. Kessels, H.W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    Article  CAS  Google Scholar 

  39. Jonas, P. The time course of signaling at central glutamatergic synapses. News Physiol. Sci. 15, 83–89 (2000).

    CAS  Google Scholar 

  40. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    Article  CAS  Google Scholar 

  41. Rescorla, R.A. Spontaneous recovery. Learn. Mem. 11, 501–509 (2004).

    Article  Google Scholar 

  42. Clem, R.L. & Huganir, R.L. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010).

    Article  CAS  Google Scholar 

  43. Migues, P.V. et al. PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat. Neurosci. 13, 630–634 (2010).

    Article  CAS  Google Scholar 

  44. Serrano, P. et al. PKMζ maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol. 6, 2698–2706 (2008).

    Article  CAS  Google Scholar 

  45. Wang, S.H., de Oliveira Alvares, L. & Nader, K. Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat. Neurosci. 12, 905–912 (2009).

    Article  CAS  Google Scholar 

  46. Chan, W.Y., Leung, H.T., Westbrook, R.F. & McNally, G.P. Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning. Learn. Mem. 17, 512–521 (2010).

    Article  Google Scholar 

  47. Maren, S. Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70, 830–845 (2011).

    Article  CAS  Google Scholar 

  48. Han, J.H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009).

    Article  CAS  Google Scholar 

  49. Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).

    Article  CAS  Google Scholar 

  50. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic, San Diego, 1997).

Download references

Acknowledgements

The authors thank J. Peters, M. van den Oever, R. van Kesteren and S.A. Kushner for critical reading of previous versions of this manuscript, and K.W. Li for technical advice in relation to biotinylation experiments. P.R.-R. was supported by a Neuromics Marie Curie Early Stage Training grant (MEST-CT-2005-020919).

Author information

Authors and Affiliations

Authors

Contributions

P.R.-R., A.B.S. and S.S. designed the molecular experiments. P.R.-R., D.C.R., H.D.M. and S.S. designed the physiological experiments. P.R.-R., O.S. and S.S. designed the behavioral experiments. P.R.-R. executed molecular experiments. D.C.R. executed physiological experiments. P.R.-R. and R.J.v.d.L. executed behavioral experiments. P.R.-R. and S.S. analyzed molecular experiments. D.C.R. and H.D.M. analyzed physiological experiments. P.R.-R. and S.S. analyzed behavioral experiments. P.R.-R., D.C.R., A.B.S. and S.S. wrote the manuscript.

Corresponding author

Correspondence to Sabine Spijker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao-Ruiz, P., Rotaru, D., van der Loo, R. et al. Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat Neurosci 14, 1302–1308 (2011). https://doi.org/10.1038/nn.2907

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing