Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Auditory cortex spatial sensitivity sharpens during task performance

Abstract

Activity in the primary auditory cortex (A1) is essential for normal sound localization behavior, but previous studies of the spatial sensitivity of neurons in A1 have found broad spatial tuning. We tested the hypothesis that spatial tuning sharpens when an animal engages in an auditory task. Cats performed a task that required evaluation of the locations of sounds and one that required active listening, but in which sound location was irrelevant. Some 26–44% of the units recorded in A1 showed substantially sharpened spatial tuning during the behavioral tasks as compared with idle conditions, with the greatest sharpening occurring during the location-relevant task. Spatial sharpening occurred on a scale of tens of seconds and could be replicated multiple times in 1.5-h test sessions. Sharpening resulted primarily from increased suppression of responses to sounds at least-preferred locations. That and an observed increase in latencies suggest an important role of inhibitory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task-dependant modulation of spatial sensitivity.
Figure 2: Modulation of spatial sensitivity in sequential conditions.
Figure 3: PSTH plots in three task conditions from two units recorded from the left hemisphere that showed offset-dominant responses to 150-ms stimuli.
Figure 4: Comparisons of ERRF width across conditions for all units that showed excitatory responses in the first 40 ms after stimulus onset.
Figure 5: Percentage of units that showed significant sharpening or broadening of spatial tuning between condition pairs.
Figure 6: First spike latency for preferred locations was longer during behavioral conditions.
Figure 7: Spike rates decreased in the localization task primarily for stimuli at least-preferred locations.
Figure 8: Time course of the task-dependent modulation of the response at single location that showed strongest suppression when the localization task was compared with the idle condition.

Similar content being viewed by others

References

  1. Mondor, T.A. & Zatorre, R.J. Shifting and focusing auditory spatial attention. J. Exp. Psychol. Hum. Percept. Perform. 21, 387–409 (1995).

    Article  CAS  Google Scholar 

  2. Spence, C.J. & Driver, J. Covert spatial orienting in audition: exogenous and endogenous mechanisms. J. Exp. Psychol. Hum. Percept. Perform. 20, 555–574 (1994).

    Article  Google Scholar 

  3. McDonald, J.J. & Ward, L.M. Spatial relevance determines facilitatory and inhibitory effects of auditory covert spatial orienting. J. Exp. Psychol. Hum. Percept. Perform. 25, 1234–1252 (1999).

    Article  Google Scholar 

  4. Roberts, K.L., Summerfield, A.Q. & Hall, D.A. Covert auditory spatial orienting: an evaluation of the spatial relevance hypothesis. J. Exp. Psychol. Hum. Percept. Perform. 35, 1178–1191 (2009).

    Article  Google Scholar 

  5. Rhodes, G. Auditory attention and the representation of spatial information. Percept. Psychophys. 42, 1–14 (1987).

    Article  CAS  Google Scholar 

  6. Kidd, G. Jr., Arbogast, T.L., Mason, C.R. & Gallun, F.J. The advantage of knowing where to listen. J. Acoust. Soc. Am. 118, 3804–3815 (2005).

    Article  Google Scholar 

  7. Best, V., Ozmeral, E.J., Kopco, N. & Shinn-Cunningham, B.G. Object continuity enhances selective auditory attention. Proc. Natl. Acad. Sci. USA 105, 13174–13178 (2008).

    Article  CAS  Google Scholar 

  8. Allen, K., Alais, D. & Carlile, S. Speech intelligibility reduces over distance from an attended location: evidence for an auditory spatial gradient of attention. Atten. Percept. Psychophys. 71, 164–173 (2009).

    Article  Google Scholar 

  9. Kopco, N., Best, V. & Shinn-Cunningham, B.G. Sound localization with a preceding distractor. J. Acoust. Soc. Am. 121, 420–432 (2007).

    Article  Google Scholar 

  10. Jenkins, W.M. & Merzenich, M.M. Role of cat primary auditory cortex for sound-localization behavior. J. Neurophysiol. 52, 819–847 (1984).

    Article  CAS  Google Scholar 

  11. Malhotra, S., Hall, A.J. & Lomber, S.G. Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J. Neurophysiol. 92, 1625–1643 (2004).

    Article  Google Scholar 

  12. Malhotra, S., Stecker, G.C., Middlebrooks, J.C. & Lomber, S.G. Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J. Neurophysiol. 99, 1628–1642 (2008).

    Article  Google Scholar 

  13. Lee, C.C. & Winer, J.A. Connections of cat auditory cortex. III. Corticocortical system. J. Comp. Neurol. 507, 1920–1943 (2008).

    Article  Google Scholar 

  14. Middlebrooks, J.C. & Pettigrew, J.D. Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J. Neurosci. 1, 107–120 (1981).

    Article  CAS  Google Scholar 

  15. Imig, T.J., Irons, W.A. & Samson, F.R. Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. J. Neurophysiol. 63, 1448–1466 (1990).

    Article  CAS  Google Scholar 

  16. Middlebrooks, J.C., Clock, A.E., Xu, L. & Green, D.M. A panoramic code for sound location by cortical neurons. Science 264, 842–844 (1994).

    Article  CAS  Google Scholar 

  17. Mickey, B.J. & Middlebrooks, J.C. Representation of auditory space by cortical neurons in awake cats. J. Neurosci. 23, 8649–8663 (2003).

    Article  CAS  Google Scholar 

  18. Moore, B.C. & Glasberg, B.R. Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J. Acoust. Soc. Am. 74, 750–753 (1983).

    Article  CAS  Google Scholar 

  19. Stecker, G.C., Harrington, I.A., Macpherson, E.A. & Middlebrooks, J.C. Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. J. Neurophysiol. 94, 1267–1280 (2005).

    Article  Google Scholar 

  20. Furukawa, S. & Middlebrooks, J.C. Cortical representation of auditory space: information-bearing features of spike patterns. J. Neurophysiol. 87, 1749–1762 (2002).

    Article  Google Scholar 

  21. Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6, 1216–1223 (2003).

    Article  CAS  Google Scholar 

  22. Polley, D.B., Steinberg, E.E. & Merzenich, M.M. Perceptual learning directs auditory cortical map reorganization through top-down influences. J. Neurosci. 26, 4970–4982 (2006).

    Article  CAS  Google Scholar 

  23. Benson, D.A., Hienz, R.D. & Goldstein, M.H. Jr. Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: spatial tuning and behavioral dependency. Brain Res. 219, 249–267 (1981).

    Article  CAS  Google Scholar 

  24. Scott, B.H., Malone, B.J. & Semple, M.N. Effect of behavioral context on representation of a spatial cue in core auditory cortex of awake macaques. J. Neurosci. 27, 6489–6499 (2007).

    Article  CAS  Google Scholar 

  25. Wang, X., Lu, T., Snider, R.K. & Liang, L. Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435, 341–346 (2005).

    Article  CAS  Google Scholar 

  26. Diamond, D.M. & Weinberger, N.M. Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav. Neurosci. 103, 471–494 (1989).

    Article  CAS  Google Scholar 

  27. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  28. Rasmusson, D.D., Smith, S.A. & Semba, K. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience 149, 232–241 (2007).

    Article  CAS  Google Scholar 

  29. Golmayo, L., Nunez, A. & Zaborszky, L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 119, 597–609 (2003).

    Article  CAS  Google Scholar 

  30. Kilgard, M.P. & Merzenich, M.M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    Article  CAS  Google Scholar 

  31. Bao, S., Chan, V.T. & Merzenich, M.M. Cortical remodeling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 (2001).

    Article  CAS  Google Scholar 

  32. Zhang, Y. & Yan, J. Corticothalamic feedback for sound-specific plasticity of auditory thalamic neurons elicited by tones paired with basal forebrain stimulation. Cereb. Cortex 18, 1521–1528 (2008).

    Article  Google Scholar 

  33. Ghose, G.M. Learning in mammalian sensory cortex. Curr. Opin. Neurobiol. 14, 513–518 (2004).

    Article  CAS  Google Scholar 

  34. Ohl, F.W. & Scheich, H. Learning-induced plasticity in animal and human auditory cortex. Curr. Opin. Neurobiol. 15, 470–477 (2005).

    Article  CAS  Google Scholar 

  35. Witte, R.S. & Kipke, D.R. Enhanced contrast sensitivity in auditory cortex as cats learn to discriminate sound frequencies. Brain Res. Cogn. Brain Res. 23, 171–184 (2005).

    Article  Google Scholar 

  36. Brechmann, A. & Scheich, H. Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb. Cortex 15, 578–587 (2005).

    Article  Google Scholar 

  37. Cansino, S. & Williamson, S.J. Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Res. 764, 53–66 (1997).

    Article  CAS  Google Scholar 

  38. Atiani, S., Elhilali, M., David, S.V., Fritz, J.B. & Shamma, S.A. Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron 61, 467–480 (2009).

    Article  CAS  Google Scholar 

  39. Otazu, G.H., Tai, L.H., Yang, Y. & Zador, A.M. Engaging in an auditory task suppresses responses in auditory cortex. Nat. Neurosci. 12, 646–654 (2009).

    Article  CAS  Google Scholar 

  40. McAlonan, K., Cavanaugh, J. & Wurtz, R.H. Attentional modulation of thalamic reticular neurons. J. Neurosci. 26, 4444–4450 (2006).

    Article  CAS  Google Scholar 

  41. Zikopoulos, B. & Barbas, H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J. Neurosci. 26, 7348–7361 (2006).

    Article  CAS  Google Scholar 

  42. Kimura, A., Imbe, H., Donishi, T. & Tamai, Y. Axonal projections of single auditory neurons in the thalamic reticular nucleus: implications for tonotopy-related gating function and cross-modal modulation. Eur. J. Neurosci. 26, 3524–3535 (2007).

    Article  CAS  Google Scholar 

  43. Cotillon-Williams, N., Huetz, C., Hennevin, E. & Edeline, J.M. Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons. J. Neurophysiol. 99, 1137–1151 (2008).

    Article  CAS  Google Scholar 

  44. Verbny, Y.I., Erdelyi, F., Szabo, G. & Banks, M.I. Properties of a population of GABAergic cells in murine auditory cortex weakly excited by thalamic stimulation. J. Neurophysiol. 96, 3194–3208 (2006).

    Article  CAS  Google Scholar 

  45. Ma, X. & Suga, N. Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. J. Neurosci. 29, 4888–4896 (2009).

    Article  CAS  Google Scholar 

  46. Ter-Mikaelian, M., Sanes, D.H. & Semple, M.N. Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. J. Neurosci. 27, 6091–6102 (2007).

    Article  CAS  Google Scholar 

  47. Zhou, B., Green, D.M. & Middlebrooks, J.C. Characterization of external ear impulse responses using Golay codes. J. Acoust. Soc. Am. 92, 1169–1171 (1992).

    Article  CAS  Google Scholar 

  48. Nunamaker, E.A., Purcell, E.K. & Kipke, D.R. In vivo stability and biocompatibility of implanted calcium alginate disks. J. Biomed. Mater. Res. A 83, 1128–1137 (2007).

    Article  Google Scholar 

  49. Efron, B & Tibshirani, R. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

  50. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Download references

Acknowledgements

We thank I. Harrington, E. Macpherson, J. Wiler, E. Hand, G. Rising, D. Vailliencourt, C. Ellinger and Z. Onsan for technical support. We thank A. Kirby and R. Adrian for helpful comments on the manuscript. This work was supported by National Institute on Deafness and Other Communication Disorders grants R01 DC-000420, and P30 DC-05188 (to J. Schacht).

AUTHOR CONTRIBUTIONS

C.-C.L. and J.C.M. designed the experiments. C.-C.L. conducted the experiments. C.-C.L. collected and analyzed the data. C.-C.L. and J.C.M. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C Middlebrooks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 2870 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CC., Middlebrooks, J. Auditory cortex spatial sensitivity sharpens during task performance. Nat Neurosci 14, 108–114 (2011). https://doi.org/10.1038/nn.2713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing