Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease

Abstract

Parkinson's disease is a common neurodegenerative disorder characterized by a profound motor disability that is traceable to the emergence of synchronous, rhythmic spiking in neurons of the external segment of the globus pallidus (GPe). The origins of this pathophysiology are poorly defined for the generation of pacemaking. After the induction of a parkinsonian state in mice, there was a progressive decline in autonomous GPe pacemaking, which normally serves to desynchronize activity. The loss was attributable to the downregulation of an ion channel that is essential in pacemaking, the hyperpolarization and cyclic nucleotide–gated (HCN) channel. Viral delivery of HCN2 subunits restored pacemaking and reduced burst spiking in GPe neurons. However, the motor disability induced by dopamine (DA) depletion was not reversed, suggesting that the loss of pacemaking was a consequence, rather than a cause, of key network pathophysiology, a conclusion that is consistent with the ability of L-type channel antagonists to attenuate silencing after DA depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopamine depletion reduces autonomous activity of GPe neurons.
Figure 2: Spontaneous activity of GPe neurons from naive and chronic DA depletion in vivo.
Figure 3: Diminished HCN channel activity in GPe neurons after acute and chronic DA depletion.
Figure 4: Western blot and qPCR analysis of HCN channel subunits.
Figure 5: Autonomous activity and HCN currents of GPe neurons from mice lacking HCN1 or HCN2.
Figure 6: Recombinant HCN2 subunit delivery mediated by adeno-associated virus in GPe.
Figure 7: Cellular activity seemed encoded by Ca2+ influx via L-type Ca2+ channels in GPe neurons.

Similar content being viewed by others

References

  1. DeLong, M.R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    Article  PubMed  Google Scholar 

  2. Hammond, C., Bergman, H. & Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 30, 357–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rivlin-Etzion, M. et al. Basal ganglia oscillations and pathophysiology of movement disorders. Curr. Opin. Neurobiol. 16, 629–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. DeLong, M.R. Activity of pallidal neurons during movement. J. Neurophysiol. 34, 414–427 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Chan, C.S., Shigemoto, R., Mercer, J.N. & Surmeier, D.J. HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J. Neurosci. 24, 9921–9932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stanford, I.M. Independent neuronal oscillators of the rat globus pallidus. J. Neurophysiol. 89, 1713–1717 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kita, H. & Kitai, S.T. Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res. 564, 296–305 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Nambu, A. & Llinas, R. Electrophysiology of globus pallidus neurons in vitro. J. Neurophysiol. 72, 1127–1139 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P. & Wilson, C.J. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25, 525–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Obeso, J.A. et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci. 23, S8–S19 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Walters, J.R., Ruskin, D.N., Allers, K.A. & Bergstrom, D.A. Pre- and postsynaptic aspects of dopamine-mediated transmission. Trends Neurosci. 23, S41–S47 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Mallet, N., Ballion, B., Le Moine, C. & Gonon, F. Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terman, D., Rubin, J.E., Yew, A.C. & Wilson, C.J. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22, 2963–2976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gillies, A., Willshaw, D. & Li, Z. Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc. R. Soc. Lond. B 269, 545–551 (2002).

    Article  Google Scholar 

  16. Surmeier, D.J., Mercer, J.N. & Chan, C.S. Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr. Opin. Neurobiol. 15, 312–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mercer, J.N., Chan, C.S., Tkatch, T., Held, J. & Surmeier, D.J. Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J. Neurosci. 27, 13552–13566 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, W. & Linden, D.J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4, 885–900 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Iancu, R., Mohapel, P., Brundin, P. & Paul, G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behav. Brain Res. 162, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Schallert, T., Fleming, S.M., Leasure, J.L., Tillerson, J.L. & Bland, S.T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Shin, R.M. et al. Dopamine D4 receptor-induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. J. Neurosci. 23, 11662–11672 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper, A.J. & Stanford, I.M. Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology 41, 62–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe, K. Kita, T. & Kita, H. Presynaptic actions of D2-like receptors in the rat cortico-striato-globus pallidus disynaptic connection in vitro. J. Neurophysiol 101, 665–671 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chan, C.S. et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447, 1081–1086 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Biel, M., Wahl-Schott, C., Michalakis, S. & Zong, X. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Lewis, A.S. et al. Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J. Neurosci. 29, 6250–6265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santoro, B., Wainger, B.J. & Siegelbaum, S.A. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J. Neurosci. 24, 10750–10762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Notomi, T. & Shigemoto, R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 471, 241–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Chung, W.K. et al. Absence epilepsy in apathetic, a spontaneous mutant mouse lacking the h channel subunit, HCN2. Neurobiol. Dis. 33, 499–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Nolan, M.F. et al. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell 115, 551–564 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Galati, S. et al. The pharmacological blockade of medial forebrain bundle induces an acute pathological synchronization of the cortico-subthalamic nucleus-globus pallidus pathway. J. Physiol. (Lond.) 587, 4405–4423 (2009).

    Article  CAS  Google Scholar 

  34. Heimer, G., Bar-Gad, I., Goldberg, J.A. & Bergman, H. Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J. Neurosci. 22, 7850–7855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walters, J.R., Hu, D., Itoga, C.A., Parr-Brownlie, L.C. & Bergstrom, D.A. Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine. Neuroscience 144, 762–776 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Mallet, N. et al. Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci. 28, 14245–14258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shah, M.M., Anderson, A.E., Leung, V., Lin, X. & Johnston, D. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44, 495–508 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strauss, U. et al. An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. Eur. J. Neurosci. 19, 3048–3058 (2004).

    Article  PubMed  Google Scholar 

  39. Kole, M.H., Brauer, A.U. & Stuart, G.J. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J. Physiol. (Lond.) 578, 507–525 (2007).

    Article  CAS  Google Scholar 

  40. Destexhe, A. & Marder, E. Plasticity in single neuron and circuit computations. Nature 431, 789–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zucker, R.S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, W. & Lipscombe, D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Hernández, A. et al. Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. J. Neurophysiol. 96, 2877–2888 (2006).

    Article  PubMed  Google Scholar 

  45. Higley, M.J. & Sabatini, B.L. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat. Neurosci. 13, 958–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fleming, S.M. et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J. Neurosci. 24, 9434–9440 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blume, S.R., Cass, D.K. & Tseng, K.Y. Stepping test in mice: a reliable approach in determining forelimb akinesia in MPTP-induced Parkinsonism. Exp. Neurol. 219, 208–211 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Chen, K. Saporito and S. Ulrich for technical assistance. This work was supported by grants from the Parkinson's Disease Foundation and American Parkinson Disease Association Research to C.S.C.; a grant from the Michael J. Fox Foundation to P.O.; a grant from the Hartmann Foundation to D.J.S. and US National Institutes of Health grants NS069777 to C.S.C., MH082522 to T.S.G., NS064757 to A.S.L., NS05595 and NS059934 to D.M.C., NS042762 to H.K. and NS047085 to D.J.S.

Author information

Authors and Affiliations

Authors

Contributions

C.S.C. and D.J.S. conceived the study, designed the experiments and directed the project. K.E.G. and P.O. designed the viral expression strategy and generated and validated the HCN2 vectors in vitro and in vivo. C.S.C., T.S.G., J.N.G., J.N.M. and H.K. carried out the recordings. A.S.L., R.S. and D.M.C. provided HCN mutants, generated the antibodies and carried out the western blots. C.S.C., A.B.G. and K.E.G. designed the probes and carried out the qPCRs. T.T. participated in the exploratory phase of the qPCR experiments. K.E.G and S.M.F. carried out the behavioral analyses. C.S.C. and D.J.S. wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to D James Surmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, C., Glajch, K., Gertler, T. et al. HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nat Neurosci 14, 85–92 (2011). https://doi.org/10.1038/nn.2692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing