Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parallel processing of visual space by neighboring neurons in mouse visual cortex

Abstract

Visual cortex shows smooth retinotopic organization on the macroscopic scale, but it is unknown how receptive fields are organized at the level of neighboring neurons. This information is crucial for discriminating among models of visual cortex. We used in vivo two-photon calcium imaging to independently map ON and OFF receptive field subregions of local populations of layer 2/3 neurons in mouse visual cortex. Receptive field subregions were often precisely shared among neighboring neurons. Furthermore, large subregions seem to be assembled from multiple smaller, non-overlapping subregions of other neurons in the same local population. These experiments provide, to our knowledge, the first characterization of the diversity of receptive fields in a dense local network of visual cortex and reveal elementary units of receptive field organization. Our results suggest that a limited pool of afferent receptive fields is available to a local population of neurons and reveal new organizational principles for the neural circuitry of the mouse visual cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping receptive fields with population calcium imaging and sparse-noise visual stimuli.
Figure 2: Receptive field subregions obtained with population calcium imaging.
Figure 3: Pairwise subregion overlaps are higher than expected for random positioning.
Figure 4: Features of local receptive field organization: shared subregions and spanned subregions.
Figure 5: ON and OFF subregions are offset with respect to each other in visual space.

Similar content being viewed by others

References

  1. Hubel, D.H. & Wiesel, T.N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    Article  CAS  Google Scholar 

  2. Smith, S.L. & Trachtenberg, J.T. Experience-dependent binocular competition in the visual cortex begins at eye opening. Nat. Neurosci. 10, 370–375 (2007).

    Article  CAS  Google Scholar 

  3. Kalatsky, V.A. & Stryker, M.P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article  CAS  Google Scholar 

  4. Wagor, E., Mangini, N.J. & Pearlman, A.L. Retinotopic organization of striate and extrastriate visual cortex in the mouse. J. Comp. Neurol. 193, 187–202 (1980).

    Article  CAS  Google Scholar 

  5. Dräger, U.C. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160, 269–290 (1975).

    Article  Google Scholar 

  6. Hubel, D.H. & Wiesel, T.N. Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–305 (1974).

    Article  CAS  Google Scholar 

  7. DeAngelis, G.C., Ghose, G.M., Ohzawa, I. & Freeman, R.D. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19, 4046–4064 (1999).

    Article  CAS  Google Scholar 

  8. Reich, D.S., Mechler, F. & Victor, J.D. Independent and redundant information in nearby cortical neurons. Science 294, 2566–2568 (2001).

    Article  CAS  Google Scholar 

  9. Yen, S.C., Baker, J. & Gray, C.M. Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J. Neurophysiol. 97, 1326–1341 (2007).

    Article  Google Scholar 

  10. Wässle, H., Boycott, B.B. & Illing, R.B. Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. Lond. B Biol. Sci. 212, 177–195 (1981).

    Article  Google Scholar 

  11. Ringach, D.L. On the origin of the functional architecture of the cortex. PLoS ONE 2, e251 (2007).

    Article  Google Scholar 

  12. Soodak, R.E. The retinal ganglion cell mosaic defines orientation columns in striate cortex. Proc. Natl. Acad. Sci. USA 84, 3936–3940 (1987).

    Article  CAS  Google Scholar 

  13. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  14. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  Google Scholar 

  15. Mata, M.L. & Ringach, D.L. Spatial overlap of ON and OFF subregions and its relation to response modulation ratio in macaque primary visual cortex. J. Neurophysiol. 93, 919–928 (2005).

    Article  Google Scholar 

  16. Yeh, C.I., Xing, D. & Shapley, R.M. “Black” responses dominate macaque primary visual cortex V1. J. Neurosci. 29, 11753–11760 (2009).

    Article  CAS  Google Scholar 

  17. Métin, C., Godement, P. & Imbert, M. The primary visual cortex in the mouse: receptive field properties and functional organization. Exp. Brain Res. 69, 594–612 (1988).

    Article  Google Scholar 

  18. Mangini, N.J. & Pearlman, A.L. Laminar distribution of receptive field properties in the primary visual cortex of the mouse. J. Comp. Neurol. 193, 203–222 (1980).

    Article  CAS  Google Scholar 

  19. Liu, B.H. et al. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 29, 10520–10532 (2009).

    Article  CAS  Google Scholar 

  20. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  Google Scholar 

  21. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    Article  CAS  Google Scholar 

  22. Ringach, D.L. Haphazard wiring of simple receptive fields and orientation columns in visual cortex. J. Neurophysiol. 92, 468–476 (2004).

    Article  Google Scholar 

  23. Sohya, K., Kameyama, K., Yanagawa, Y., Obata, K. & Tsumoto, T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci. 27, 2145–2149 (2007).

    Article  CAS  Google Scholar 

  24. Mrsic-Flogel, T.D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007).

    Article  CAS  Google Scholar 

  25. Gandhi, S.P., Yanagawa, Y. & Stryker, M.P. Delayed plasticity of inhibitory neurons in developing visual cortex. Proc. Natl. Acad. Sci. USA 105, 16797–16802 (2008).

    Article  CAS  Google Scholar 

  26. Seung, H.S. Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62, 17–29 (2009).

    Article  CAS  Google Scholar 

  27. Balkema, G.W. Jr. & Pinto, L.H. Electrophysiology of retinal ganglion cells in the mouse: a study of a normally pigmented mouse and a congenic hypopigmentation mutant, pearl. J. Neurophysiol. 48, 968–980 (1982).

    Article  Google Scholar 

  28. Hammond, P. Cat retinal ganglion cells: size and shape of receptive field centres. J. Physiol. (Lond.) 242, 99–118 (1974).

    Article  CAS  Google Scholar 

  29. Chen, C. & Regehr, W.G. Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955–966 (2000).

    Article  CAS  Google Scholar 

  30. Grubb, M.S. & Thompson, I.D. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90, 3594–3607 (2003).

    Article  Google Scholar 

  31. Gauthier, J.L. et al. Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biol. 7, e1000063 (2009).

    Article  Google Scholar 

  32. Carandini, M. et al. Do we know what the early visual system does? J. Neurosci. 25, 10577–10597 (2005).

    Article  CAS  Google Scholar 

  33. Olshausen, B.A. & Field, D.J. How close are we to understanding V1? Neural Comput. 17, 1665–1699 (2005).

    Article  Google Scholar 

  34. Huberman, A.D. et al. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327–334 (2009).

    Article  CAS  Google Scholar 

  35. Huberman, A.D. et al. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425–438 (2008).

    Article  CAS  Google Scholar 

  36. Völgyi, B., Chheda, S. & Bloomfield, S.A. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512, 664–687 (2009).

    Article  Google Scholar 

  37. Song, S. & Abbott, L.F. Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339–350 (2001).

    Article  CAS  Google Scholar 

  38. Torrealba, F., Guillery, R.W., Eysel, U., Polley, E.H. & Mason, C.A. Studies of retinal representations within the cat's optic tract. J. Comp. Neurol. 211, 377–396 (1982).

    Article  CAS  Google Scholar 

  39. Torrealba, F., Guillery, R.W., Polley, E.H. & Mason, C.A. A demonstration of several independent, partially overlapping, retinotopic maps in the optic tract of the cat. Brain Res. 219, 428–432 (1981).

    Article  CAS  Google Scholar 

  40. Nauhaus, I., Benucci, A., Carandini, M. & Ringach, D.L. Neuronal selectivity and local map structure in visual cortex. Neuron 57, 673–679 (2008).

    Article  CAS  Google Scholar 

  41. Gordon, J.A. Cellular mechanisms of visual cortical plasticity: a game of cat and mouse. Learn. Mem. 4, 245–261 (1997).

    Article  CAS  Google Scholar 

  42. Jin, J.Z. et al. On and off domains of geniculate afferents in cat primary visual cortex. Nat. Neurosci. 11, 88–94 (2008).

    Article  CAS  Google Scholar 

  43. Levi, D.M., Jiang, B.C. & Klein, S.A. Spatial interval discrimination with blurred lines: black and white are separate but not equal at multiple spatial scales. Vision Res. 30, 1735–1750 (1990).

    Article  CAS  Google Scholar 

  44. Levi, D.M. & Westheimer, G. Spatial-interval discrimination in the human fovea: what delimits the interval? J. Opt. Soc. Am. 4, 1304–1313 (1987).

    Article  CAS  Google Scholar 

  45. Ohki, K. & Reid, R.C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007).

    Article  CAS  Google Scholar 

  46. Gao, E., DeAngelis, G.C. & Burkhalter, A. Parallel input channels to mouse primary visual cortex. J. Neurosci. 30, 5912–5926 (2010).

    Article  CAS  Google Scholar 

  47. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  48. Garaschuk, O., Milos, R.I. & Konnerth, A. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat. Protoc. 1, 380–386 (2006).

    Article  CAS  Google Scholar 

  49. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

  50. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Clark, M. Carandini, J. Cottam, M. Havenith, J. Jack, B. Judkewitz, P. Latham, M. London, A. Mathy, I. Smith and C. Wilms for discussions and for comments on the manuscript. This work was supported by a Human Frontier Science Program Long-Term Fellowship to S.L.S., and grants by the Wellcome Trust and the Gatsby Charitable Foundation to M.H.

Author information

Authors and Affiliations

Authors

Contributions

S.L.S. and M.H. conceived the experiments. S.L.S. performed the experiments and analyzed the data. S.L.S. and M.H. interpreted the data and wrote the paper.

Corresponding author

Correspondence to Spencer L Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Notes 1–4 (PDF 3707 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat Neurosci 13, 1144–1149 (2010). https://doi.org/10.1038/nn.2620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing