Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex

Abstract

Top-down signals from frontal cortex are thought to be important in cognitive control of sensory processing. To explore this interaction, we compared activity in ferret frontal cortex and primary auditory cortex (A1) during auditory and visual tasks requiring discrimination between classes of reference and target stimuli. Frontal cortex responses were behaviorally gated, selectively encoded the timing and invariant behavioral meaning of target stimuli, could be rapid in onset, and sometimes persisted for hours following behavior. These results are consistent with earlier findings in A1 that attention triggered rapid, selective, persistent, task-related changes in spectrotemporal receptive fields. Simultaneously recorded local field potentials revealed behaviorally gated changes in inter-areal coherence that were selectively modulated between frontal cortex and focal regions of A1 that were responsive to target sounds. These results suggest that A1 and frontal cortex dynamically establish a functional connection during auditory behavior that shapes the flow of sensory information and maintains a persistent trace of recent task-relevant stimulus features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of physiological recordings.
Figure 2: Behavioral procedure and examples of typical frontal cortex neuron responses.
Figure 3: Frontal cortex population target responses during tone-detection behavior.
Figure 4: Frontal cortex class-specific responses to task-relevant sounds.
Figure 5: Persistence and extinction of frontal cortex responses following behavior.
Figure 6: Selective top-down modulation of LFP in A1 and frontal cortex.
Figure 7: Bimodal and unimodal sensory responses in frontal cortex.

Similar content being viewed by others

References

  1. Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2, 820–829 (2001).

    Article  CAS  Google Scholar 

  2. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  3. Everling, S., Tinsley, C.J., Gaffan, D. & Duncan, J. Selective representation of task-relevant objects and locations in the monkey prefrontal cortex. Eur. J. Neurosci. 23, 2197–2214 (2006).

    Article  Google Scholar 

  4. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  5. Funahashi, S. Prefrontal cortex and working memory processes. Neuroscience 139, 251–261 (2006).

    Article  CAS  Google Scholar 

  6. Buschman, T.J. & Miller, E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  Google Scholar 

  7. Gregoriou, G.G., Gotts, S.J., Zhou, H. & Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009).

    Article  CAS  Google Scholar 

  8. Fritz, J.B., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6, 1216–1223 (2003).

    Article  CAS  Google Scholar 

  9. Fritz, J.B., Elhilali, M. & Shamma, S.A. Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. J. Neurosci. 25, 7623–7635 (2005).

    Article  CAS  Google Scholar 

  10. Anton-Erxleben, K., Stephan, V.M. & Treue, S. Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cereb. Cortex 19, 2466–2478 (2009).

    Article  Google Scholar 

  11. Morishima, Y. et al. Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat. Neurosci. 12, 85–91 (2009).

    Article  CAS  Google Scholar 

  12. Di Pellegrino, G. & Wise, S.P. Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. Somatosens. Mot. Res. 10, 245–262 (1993).

    Article  CAS  Google Scholar 

  13. Wallis, J.D. & Miller, E.K. From rule to response: neuronal processes in the premotor and prefrontal cortex. J. Neurophysiol. 90, 1790–1806 (2003).

    Article  Google Scholar 

  14. Duque, A. & McCormick, D.A. Circuit based localization of ferret prefrontal cortex. Cereb. Cortex 20, 1020–1036 (2010).

    Article  Google Scholar 

  15. Mitra, P. & Bokil, H. Observed Brain Dynamics (Oxford University Press, New York, 2008).

  16. Fritz, J.B., Elhilali, M., David, S.V. & Shamma, S.A. Auditory attention—focusing the searchlight on sound. Curr. Opin. Neurobiol. 17, 437–455 (2007).

    Article  CAS  Google Scholar 

  17. Fritz, J.B., Elhilali, M. & Shamma, S.A. Adaptive changes in cortical receptive fields induced by attention to complex sounds. J. Neurophysiol. 98, 2337–2346 (2007).

    Article  Google Scholar 

  18. Polley, D.B., Steinberg, E.E. & Merzenich, M.M. Perceptual learning directs auditory cortical map reorganization through top-down influences. J. Neurosci. 26, 4970–4982 (2006).

    Article  CAS  Google Scholar 

  19. Murthy, A., Thompson, K.B. & Schall, J.D. Dynamic dissociation of visual selection from saccade programming in frontal eye field. J. Neurophysiol. 86, 2634–2637 (2001).

    Article  CAS  Google Scholar 

  20. Rainer, G., Asaad, W.F. & Miller, E.K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).

    Article  CAS  Google Scholar 

  21. Romanski, L.M. Domain specificity in the primate prefrontal cortex. Cogn. Affect. Behav. Neurosci. 4, 421–429 (2004).

    Article  Google Scholar 

  22. Sugihara, T., Diltz, M.D., Averbeck, B.B. & Romanski, L.M. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. J. Neurosci. 26, 11138–11147 (2006).

    Article  CAS  Google Scholar 

  23. Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  Google Scholar 

  24. Russ, B.E., Lee, Y.-S. & Cohen, Y.E. Neural and behavioral correlates of auditory categorization. Hear. Res. 229, 204–212 (2007).

    Article  Google Scholar 

  25. Lemus, L., Hernandez, A. & Romo, R. Neural encoding of auditory discrimination in ventral premotor cortex. Proc. Natl. Acad. Sci. USA 106, 14640–14645 (2009).

    Article  CAS  Google Scholar 

  26. Goldman, M.S. Memory without feedback in a neural network. Neuron 61, 621–634 (2009).

    Article  CAS  Google Scholar 

  27. Fujisawa, S., Amarasingham, A., Harrison, M.T. & Buzsaki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008).

    Article  CAS  Google Scholar 

  28. Meyers, E.M., Freedman, D.J., Kreiman, G., Miller, E.K. & Poggio, T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J. Neurophysiol. 100, 1407–1419 (2008).

    Article  Google Scholar 

  29. Shima, K. & Tanji, J. Neuronal activity in the supplementary and pre-supplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).

    Article  CAS  Google Scholar 

  30. Salinas, E. Rank-order–selective neurons form a temporal basis set for the generation of motor sequences. J. Neurosci. 29, 4369–4380 (2009).

    Article  CAS  Google Scholar 

  31. Bodner, M., Kroger, J. & Fuster, J.M. Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7, 1905–1908 (1996).

    Article  CAS  Google Scholar 

  32. Fusi, S., Asaad, W.F., Miller, E.K. & Wang, X.J. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54, 319–333 (2007).

    Article  CAS  Google Scholar 

  33. Jung, M.W., Baeg, E.H., Kim, M.J., Kim, Y.B. & Kim, J.J. Plasticity and memory in the prefrontal cortex. Rev. Neurosci. 19, 29–46 (2008).

    Article  Google Scholar 

  34. Baddeley, A.D. Working Memory (Clarendon/Oxford University Press, Oxford, 1986).

  35. Morris, R.G.M. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829–2846 (2006).

    Article  CAS  Google Scholar 

  36. Frey, S. & Frey, J.U. 'Synaptic tagging' and 'cross-tagging' and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog. Brain Res. 169, 117–143 (2008).

    Article  CAS  Google Scholar 

  37. Knight, R.T., Staines, W.R., Swick, D. & Chao, L.L. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. (Amst.) 101, 159–178 (1999).

    Article  CAS  Google Scholar 

  38. Ehlis, A.C. et al. Cognitive correlates of auditory sensory gating: A simultaneous near infrared spectroscopy event-related potential study. Neuroscience 159, 1032–1043 (2009).

    Article  CAS  Google Scholar 

  39. Engel, A.K. & Fries, P. Beta-band oscillations—signaling the status quo? Curr. Opin. Neurobiol. 20, 1–10 (2010).

    Article  Google Scholar 

  40. Golmayo, L., Nunez, A. & Zaborszky, L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory cortical areas. Neuroscience 119, 597–609 (2003).

    Article  CAS  Google Scholar 

  41. Rasmusson, D.D., Smith, S.A. & Semba, K. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience 149, 232–241 (2007).

    Article  CAS  Google Scholar 

  42. Roelfsema, P.R., van Ooyen, A. & Watanabe, T. Perceptual learning rules based on reinforcers and attention. Trends Cogn. Sci. 14, 64–71 (2010).

    Article  Google Scholar 

  43. Wise, S.P. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 31, 599–608 (2008).

    Article  CAS  Google Scholar 

  44. Woodman, G.F., Luck, S.J. & Schall, J.D. The role of working memory representations in the control of attention. Cereb. Cortex 17, 118–124 (2007).

    Article  Google Scholar 

  45. Messinger, A., Lebedev, M.A., Kralik, J.D. & Wise, S.P. Multitasking of attention and memory functions in the primate prefrontal cortex. J. Neurosci. 29, 5640–5653 (2009).

    Article  CAS  Google Scholar 

  46. Bizley, J.K., Nodal, F.R., Nelken, I. & King, A.J. Functional organization of ferret auditory cortex. Cereb. Cortex 15, 1637–1653 (2005).

    Article  Google Scholar 

  47. Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated though a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    Article  CAS  Google Scholar 

  48. Klein, D.J., Depireux, D.A., Simon, J.Z. & Shamma, S.A. Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. J. Comput. Neurosci. 9, 85–111 (2000).

    Article  CAS  Google Scholar 

  49. David, S.V., Mesgarani, N., Fritz, J.B. & Shamma, S.A. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli. J. Neurosci. 29, 3374–3386 (2009).

    Article  CAS  Google Scholar 

  50. Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E. & Gallant, J.L. Estimating spatial temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Comput. Neural Syst. 12, 289–316 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Duque, J. Bizley, V. Bajo, F. Nodal and A. King for discussion and for generously sharing their unpublished neuroanatomical data on the ferret frontal cortex and its connectivity with auditory cortex, N. Mesgarani for assistance with customized MATLAB software development, M. Elhilali for discussion and for analysis of memory effects in A1, S. Gotts for discussion of LFP coherence, C. Carr for cheerfully sharing laboratory resources for neuroanatomical studies and A. Israelson, A. Rubin, K. Donaldson and D. Levitt for assistance in training the ferrets in this study. This research was funded by grants from the US National Institutes of Health (R03DC005938 to J.B.F., R01DC005779 to S.A.S. and J.B.F. and F32DC008453 to S.V.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.B.F. designed and conducted all behavioral physiological experiments. S.V.D. analyzed data. J.B.F., S.V.D. and S.A.S. evaluated results. J.B.F. and P.Y. made neuroanatomical tracer injections. S.R.-S. processed all histological tissue, analyzed neuroanatomical results and made one figure. S.V.D. made all other figures. J.B.F., S.A.S. and S.V.D. wrote the manuscript.

Corresponding author

Correspondence to Jonathan B Fritz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 9806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, J., David, S., Radtke-Schuller, S. et al. Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nat Neurosci 13, 1011–1019 (2010). https://doi.org/10.1038/nn.2598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing