Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors

Abstract

The endocannabinoid 2-arachidonoylglycerol (2-AG) regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. Enzymes that hydrolyze 2-AG, such as monoacylglycerol lipase, regulate the accumulation and efficacy of 2-AG at cannabinoid receptors. We found that the recently described serine hydrolase α-β-hydrolase domain 6 (ABHD6) also controls the accumulation and efficacy of 2-AG at cannabinoid receptors. In cells from the BV-2 microglia cell line, ABHD6 knockdown reduced hydrolysis of 2-AG and increased the efficacy with which 2-AG can stimulate CB2-mediated cell migration. ABHD6 was expressed by neurons in primary culture and its inhibition led to activity-dependent accumulation of 2-AG. In adult mouse cortex, ABHD6 was located postsynaptically and its selective inhibition allowed the induction of CB1-dependent long-term depression by otherwise subthreshold stimulation. Our results indicate that ABHD6 is a rate-limiting step of 2-AG signaling and is therefore a bona fide member of the endocannabinoid signaling system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ABHD6 hydrolyzes 2-AG in BV-2 cells and controls the efficacy of 2-AG at CB2 receptors.
Figure 2: Effect of the ABHD6 inhibitor WWL70 and the MAGL inhibitor JZL184 on [3H]–2-AG hydrolysis in cell homogenates.
Figure 3: Effect of WWL70 and JZL184 on [3H]–2-AG hydrolysis and 2-AG accumulation in intact neurons in primary culture.
Figure 4: Visualization of ABHD6 protein in different cell types.
Figure 5: Localization of ABHD6 protein in mouse prefrontal cortex.
Figure 6: Effect of WWL70 and JZL184 on CB1-dependent LTD in mouse prefrontal cortex.

Similar content being viewed by others

References

  1. Stella, N. Endocannabinoid signaling in microglial cells. Neuropharmacology 56 (Suppl. 1): 244–253 (2009).

    Article  CAS  Google Scholar 

  2. Horne, E. & Stella, N. The ins and outs of endocannabinoid signaling in healthy and diseased brain. Future Lipidol. 3, 435–452 (2008).

    Article  CAS  Google Scholar 

  3. Marrs, W. & Stella, N. Measuring endocannabinoid hydrolysis: refining our tools and understanding. AAPS J. 11, 307–311 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Katona, I. & Freund, T.F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14, 923–930 (2008).

    Article  CAS  Google Scholar 

  6. Straiker, A. & Mackie, K. Cannabinoids, electrophysiology, and retrograde messengers: challenges for the next 5 years. AAPS J. 8, E272–E276 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Cabral, G.A. & Griffin-Thomas, L. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev. Mol. Med. 11, e3 (2009).

    Article  PubMed  Google Scholar 

  8. Gobbi, G. et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc. Natl. Acad. Sci. USA 102, 18620–18625 (2005).

    Article  CAS  Google Scholar 

  9. Fegley, D. et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J. Pharmacol. Exp. Ther. 313, 352–358 (2005).

    Article  CAS  Google Scholar 

  10. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Long, J.Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44 (2009).

    Article  CAS  Google Scholar 

  12. Burston, J.J. et al. N-arachidonyl maleimide potentiates the pharmacological and biochemical effects of the endocannabinoid 2-arachidonylglycerol through inhibition of monoacylglycerol lipase. J. Pharmacol. Exp. Ther. 327, 546–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bisogno, T. et al. Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo. Biochim. Biophys. Acta 1791, 53–60 (2009).

    Article  CAS  Google Scholar 

  14. Long, J.Z. et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA 106, 20270–20275 (2009).

    Article  CAS  Google Scholar 

  15. Blankman, J.L., Simon, G.M. & Cravatt, B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Saario, S.M. et al. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem. Biol. 12, 649–656 (2005).

    Article  CAS  Google Scholar 

  17. Dinh, T.P., Kathuria, S. & Piomelli, D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol. Pharmacol. 66, 1260–1264 (2004).

    Article  CAS  Google Scholar 

  18. Muccioli, G.G. et al. Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells. J. Neurosci. 27, 2883–2889 (2007).

    Article  CAS  Google Scholar 

  19. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691–697 (2005).

    Article  CAS  Google Scholar 

  20. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  21. Yates, J.R. III, McCormack, A.L. & Eng, J. Mining genomes with MS. Anal. Chem. 68, 534A–540A (1996).

    Article  CAS  Google Scholar 

  22. Goparaju, S.K., Natsuo, U., Yamaguchi, H. & Yamamoto, S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett. 422, 69–73 (1998).

    Article  CAS  Google Scholar 

  23. Walter, L. et al. Non-psychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1398–1405 (2003).

    Article  CAS  Google Scholar 

  24. Miller, A.M. & Stella, N. Microglial cell migration stimulated by ATP and C5a involve distinct molecular mechanisms: quantification of migration by a novel near-infrared method. Glia 57, 875–883 (2008).

    Article  Google Scholar 

  25. Li, W., Blankman, J.L. & Cravatt, B.F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129, 9594–9595 (2007).

    Article  CAS  Google Scholar 

  26. Dinh, T.P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Stella, N. & Piomelli, D. Receptor-dependent formation of endogenous cannabinoids in cortical neurons. Eur. J. Pharmacol. 425, 189–196 (2001).

    Article  CAS  Google Scholar 

  28. Gulyas, A.I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004).

    Article  CAS  Google Scholar 

  29. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  Google Scholar 

  30. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Lafourcade, M. et al. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS One 2, e709 (2007).

    Article  PubMed  Google Scholar 

  33. Maier, S. et al. Cellular target genes of Epstein-Barr virus nuclear antigen 2. J. Virol. 80, 9761–9771 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Marrs, W. & Stella, N. 2-AG + 2 new players = forecast for therapeutic advances. Chem. Biol. 14, 1309–1311 (2007).

    Article  CAS  Google Scholar 

  35. Walter, L., Dinh, T. & Stella, N. ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J. Neurosci. 24, 8068–8074 (2004).

    Article  CAS  Google Scholar 

  36. Witting, A., Walter, L., Wacker, J., Moller, T. & Stella, N. P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl. Acad. Sci. USA 101, 3214–3219 (2004).

    Article  CAS  Google Scholar 

  37. Stella, N., Pellerin, L. & Magistretti, P. Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2. J. Neurosci. 15, 3307–3317 (1995).

    Article  CAS  Google Scholar 

  38. Eng, J., McCormack, A.L. & Yates, J.R. III. An approach to correlate MS/MS data to amino acid sequence in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  40. Berghuis, P. et al. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316, 1212–1216 (2007).

    Article  CAS  Google Scholar 

  41. Berod, A., Hartman, B.K. & Pujol, J.F. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J. Histochem. Cytochem. 29, 844–850 (1981).

    Article  CAS  Google Scholar 

  42. Muccioli, G.G. & Stella, N. An optimized GC-MS method detects nanomolar amounts of anandamide in mouse brain. Anal. Biochem. 373, 220–228 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse (DA14486 and DA26430 to N.S., DA017259, DA009789 and DA025285 to B.F.C. and DA026161 to J.L.B.) and from the National Institute of General Medical Sciences (PHS NRSA 2T32 GM007270 to W.R.M.).

Author information

Authors and Affiliations

Authors

Contributions

W.R.M. prepared the cell cultures, performed the hydrolysis experiments, conducted the data analysis and wrote the manuscript. J.L.B. performed the ABPP experiments and contributed to the data analysis. E.A.H. performed the GC-MS and immunofluoresence experiments and contributed to the electron microscopy experiments and data analysis. A.T. and M.L. performed the electrophysiology experiments. Y.H.L. prepared the cell culture transfections and the shRNA constructs, and performed the qPCR experiments. J.C. contributed to the immunofluorescence experiments. A.L.B. performed the electron microscopy experiments. G.G.M. contributed to the hydrolysis experiments. S.S.-J.H. contributed to antibody production. G.W. and S.F. performed the cell migration experiments. J.P.A. contributed to the ABPP experiments. J.Z.L. and W.L. produced the hydrolase inhibitors. C.X. contributed to the cell culture experiments. T.M. provided the transgenic mice. K.M. provided antibodies. O.J.M. supervised the electrophysiology experiments. B.F.C. supervised the ABPP experiments and the development of hydrolase inhibitors. N.S. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Nephi Stella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 3022 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrs, W., Blankman, J., Horne, E. et al. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci 13, 951–957 (2010). https://doi.org/10.1038/nn.2601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing