Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons

Abstract

Although hippocampal theta oscillations represent a prime example of temporal coding in the mammalian brain, little is known about the specific biophysical mechanisms. Intracellular recordings support a particular abstract oscillatory interference model of hippocampal theta activity, the soma-dendrite interference model. To gain insight into the cellular and circuit level mechanisms of theta activity, we implemented a similar form of interference using the actual hippocampal network in mice in vitro. We found that pairing increasing levels of phasic dendritic excitation with phasic stimulation of perisomatic projecting inhibitory interneurons induced a somatic polarization and action potential timing profile that reproduced most common features. Alterations in the temporal profile of inhibition were required to fully capture all features. These data suggest that theta-related place cell activity is generated through an interaction between a phasic dendritic excitation and a phasic perisomatic shunting inhibition delivered by interneurons, a subset of which undergo activity-dependent presynaptic modulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental implementation of subtractive and divisive forms of inhibition.
Figure 2: SDI induces phase precession.
Figure 3: Grouped data showing phase advance and subthreshold potential profiles.
Figure 4: Delayed inhibition dissociates place-cell firing rate and phase.
Figure 5: Presynaptic cannabinoid receptor activations delays the time to peak of inhibition.

Similar content being viewed by others

References

  1. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  CAS  Google Scholar 

  2. Salinas, E. & Sejnowski, T. Correlated neuronal activity and the flow of neuronal information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  Google Scholar 

  3. Laurent, G. & Davidowitz, H. Encoding of olfactory information with oscillating assemblies. Science 265, 1872–1875 (1994).

    Article  CAS  Google Scholar 

  4. Bland, B.H. Physiology and Pharmacology of hippocampal formation theta rhythms. Prog. Neurobiol. 26, 1–54 (1986).

    Article  CAS  Google Scholar 

  5. Margrie, T.W. & Schaefer, A.T. Theta oscillation coupled spike latencies yield computational vigor in a mammalian sensory system. J. Physiol. (Lond.) 546, 363–374 (2003).

    Article  CAS  Google Scholar 

  6. O'Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  7. Skaggs, W.E., McNaughton, B.L., Wilson, M.A. & Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  Google Scholar 

  8. Hopfield, J.J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).

    Article  CAS  Google Scholar 

  9. Harris, K.D. et al. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417, 738–741 (2002).

    Article  CAS  Google Scholar 

  10. Mehta, M.R., Lee, A.K. & Wilson, M.A. Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417, 741–746 (2002).

    Article  CAS  Google Scholar 

  11. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  12. Harvey, C.D., Collman, F., Dombeck, D.A. & Tank, D.W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  CAS  Google Scholar 

  13. Maurer, A.P. & McNaughton, B.L. Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends Neurosci. 30, 325–333 (2007).

    Article  CAS  Google Scholar 

  14. Lengyel, M., Szatmary, Z. & Erdi, P. Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus 13, 700–714 (2003).

    Article  Google Scholar 

  15. Kamondi, A., Acsady, L., Wang, X.J. & Buzsaki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261 (1998).

    Article  CAS  Google Scholar 

  16. Magee, J.C. Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 86, 528–532 (2001).

    Article  CAS  Google Scholar 

  17. Wallenstein, G.V. & Hasselmo, M.E. GABAergic modulation of hippocampal population activity: sequence learning, place field development and the phase precession effect. J. Neurophysiol. 78, 393–408 (1997).

    Article  CAS  Google Scholar 

  18. Bose, A., Booth, V. & Recce, M. A temporal mechanism for generating the phase precession of hippocampal place cells. J. Comput. Neurosci. 9, 5–30 (2000).

    Article  CAS  Google Scholar 

  19. Tsodyks, M.V., Skaggs, W.E., Sejnowski, T.J. & McNaughton, B.L. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6, 271–280 (1996).

    Article  CAS  Google Scholar 

  20. Jensen, O. & Lisman, J.E. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn. Mem. 3, 279–287 (1996).

    Article  CAS  Google Scholar 

  21. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  22. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  Google Scholar 

  23. Andrasfalvy, B., Zemelman, B., Tang, J. & Vaziri, A. Two-photon optogenetic control of neural activity with single synapse precession by sculpted light. Proc. Natl. Acad. Sci. USA published online, doi:10.1073/pnas.1006620107 (11 June 2010).

  24. Chance, F.S., Abbott, L. & Reyes, A. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  Google Scholar 

  25. Mitchell, S.J. & Silver, R.A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    Article  CAS  Google Scholar 

  26. Takahashi, H. & Magee, J.C. Pathway interactions and synaptic plasticity in the distal tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).

    Article  CAS  Google Scholar 

  27. McNaughton, B.L., Barnes, C.A. & O'Keefe, J. The contributions of position, direction and velocity to single-unit activity in the hippocampus of freely moving rats. Exp. Brain Res. 52, 41–49 (1983).

    Article  CAS  Google Scholar 

  28. O'Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  29. Redish, D.A. et al. Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J. Neurosci. 21, 1–6 (2001).

    Article  Google Scholar 

  30. Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    Article  CAS  Google Scholar 

  31. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  Google Scholar 

  32. Losonczy, A., Biro, A.A. & Nusser, Z. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc. Natl. Acad. Sci. USA 101, 1362–1367 (2004).

    Article  CAS  Google Scholar 

  33. Klausberger, T. et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782–9793 (2005).

    Article  CAS  Google Scholar 

  34. Freund, T.F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007).

    Article  CAS  Google Scholar 

  35. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    Article  CAS  Google Scholar 

  36. Ali, A.B. & Todorova, M. Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1. Eur. J Neurosci. 31, 1196–1207 (2010).

    Article  CAS  Google Scholar 

  37. Robbe, D. & Buzsáki, G. Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J. Neurosci. 29, 12597–12605 (2009).

    Article  CAS  Google Scholar 

  38. Robbe, D. et al. Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat. Neurosci. 9, 1526–1533 (2006).

    Article  CAS  Google Scholar 

  39. Schmidt, R. et al. Single-trial phase precession in the hippocampus. J. Neurosci. 29, 13232–13241 (2009).

    Article  CAS  Google Scholar 

  40. Dave, A.S. & Margoliash, D. Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290, 812–816 (2000).

    Article  CAS  Google Scholar 

  41. Kleinfeld, D., Berg, R.W. & O'Connor, S.M. Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens. Mot. Res. 16, 69–88 (1999).

    Article  CAS  Google Scholar 

  42. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsaki, G. Theta oscillations provide temporal windows for the local circuit computation in the entorhinal-hippocampal loop. Neuron 64, 267–280 (2009).

    Article  CAS  Google Scholar 

  43. Lisman, J.E. & Grace, A.A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    Article  CAS  Google Scholar 

  44. Hasselmo, M.E. & Eichenbaum, H. Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw. 18, 1172–1190 (2005).

    Article  Google Scholar 

  45. Somogyi, P., Tamás, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organization in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  46. Royer, S. et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 2279–2291 (2010).

    Article  Google Scholar 

  47. Grieger, J.C., Choi, V.W. & Samulski, R.J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2007).

    Article  Google Scholar 

  48. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  Google Scholar 

  49. Vaziri, A., Tang, J., Shroff, H. & Shank, C. Multilayer three-dimensional super-resolution imaging of thick biological samples. Proc. Natl. Acad. Sci. USA 105, 20221–20226 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Shield, D. O'Connor and A. Villacis for help with histology and stereotaxic viral injections, and B.K. Andrasfalvy for help with the temporal focusing experiments. We thank for P. Somogyi and S. Siegelbaum for their comments on a previous version of the manuscript. Precursors of the GAD65-Cre knock-in mice were originally developed by B.V.Z. in the laboratory of G. Miesenboeck at the Memorial Sloan-Kettering Cancer Center in New York.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and J.C.M. performed electrophysiological experiments, analyzed the data and wrote the paper. B.V.Z. prepared plasmids, designed Cre recombinase–dependent rAAV-FLEX-rev-ChR2-GFP viruses, generated the GAD65-Cre knock-in mouse line and helped with the manuscript. A.V. designed and built the experimental setup for temporal focusing.

Corresponding author

Correspondence to Jeffrey C Magee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 4166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losonczy, A., Zemelman, B., Vaziri, A. et al. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat Neurosci 13, 967–972 (2010). https://doi.org/10.1038/nn.2597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing