Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contrast gain control and cortical TrkB signaling shape visual acuity

Abstract

During development and aging and in amblyopia, visual acuity is far below the limitations set by the retina. Expression of brain-derived neurotrophic factor (BDNF) in the visual cortex is reduced in these situations. We asked whether neurotrophic tyrosine kinase receptor, type 2 (TrkB) regulates cortical visual acuity in adult mice. We found that genetically interfering with TrkB/BDNF signaling in pyramidal cells in the mature visual cortex reduced synaptic strength and resulted in a loss of neural responses to high spatial-frequency stimuli. Responses to low spatial-frequency stimuli were unaffected. This selective loss was not accompanied by a change in receptive field sizes or plasticity, but apparent contrast was reduced. Our results indicate that a dependence on spatial frequency in the Heeger normalization model explains this selective effect of contrast reduction on high-resolution vision and suggest that it involves contrast gain control operating in the visual cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TrkB.T1-EGFP in pyramidal neurons of the adult visual cortex causes reduced synaptic strength.
Figure 2: Acuity is reduced in V1 of TrkB.T1-EGFP mice.
Figure 3: Apparent contrast is reduced in TrkB.T1-EGFP mice.
Figure 4: Apparent contrast reduction in TrkB.T1-EGFP mice explains acuity loss.
Figure 5: Normalization model explains the differential effect of reduced contrast on responses to high and low spatial-frequency stimuli.
Figure 6: Imaging confirms the model's prediction that population contrast tuning curves at different spatial frequencies are identical when contrast is rescaled.
Figure 7: Model predicts population spatial frequency and contrast relationships in wild-type and TrkB.T1-EGFP mice.

Similar content being viewed by others

References

  1. Ress, D. & Heeger, D.J. Neuronal correlates of perception in early visual cortex. Nat. Neurosci. 6, 414–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Gianfranceschi, L., Fiorentini, A. & Maffei, L. Behavioural visual acuity of wild-type and bcl2 transgenic mouse. Vision Res. 39, 569–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Spekreijse, H. Comparison of acuity tests and pattern evoked potential criteria: two mechanisms underly acuity maturation in man. Behav. Brain Res. 10, 107–117 (1983).

    Article  CAS  Google Scholar 

  4. Spear, P.D. Neural bases of visual deficits during aging. Vision Res. 33, 2589–2609 (1993).

    Article  CAS  Google Scholar 

  5. Barrett, B.T., Bradley, A. & McGraw, P.V. Understanding the neural basis of ambylopia. Neuroscientist 10, 106–117 (2004).

    Article  Google Scholar 

  6. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  7. Katoh-Semba, R., Semba, R., Takeuchi, I.K. & Kato, K. Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci. Res. 31, 227–234 (1998).

    Article  CAS  Google Scholar 

  8. Bozzi, Y. et al. Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex. Neuroscience 69, 1133–1144 (1995).

    Article  CAS  Google Scholar 

  9. Rossi, F.M., Bozzi, Y., Pizzorusso, T. & Maffei, L. Monocular deprivation decreases brain-derived neurotrophic factor immunoreactivity in the rat visual cortex. Neuroscience 90, 363–368 (1999).

    Article  CAS  Google Scholar 

  10. Heimel, J.A., Hartman, R.J., Hermans, J.M. & Levelt, C.N. Screening mouse vision with intrinsic signal optical imaging. Eur. J. Neurosci. 25, 795–804 (2007).

    Article  Google Scholar 

  11. Sale, A. et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 10, 679–681 (2007).

    Article  CAS  Google Scholar 

  12. Maya Vetencourt, J.F. et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388 (2008).

    Article  CAS  Google Scholar 

  13. Gianfranceschi, L. et al. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. USA 100, 12486–12491 (2003).

    Article  CAS  Google Scholar 

  14. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, B. Acute and long-term synaptic modulation by neurotrophins. Prog. Brain Res. 146, 137–150 (2004).

    CAS  Google Scholar 

  16. Chakravarthy, S. et al. Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc. Natl. Acad. Sci. USA 103, 1071–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  Google Scholar 

  18. Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  Google Scholar 

  19. Eide, F.F. et al. Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J. Neurosci. 16, 3123–3129 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Sawtell, N.B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).

    Article  CAS  Google Scholar 

  21. Dahlhaus, M. et al. Notch1 signaling in pyramidal neurons regulates synaptic connectivity and experience-dependent modifications of acuity in the visual cortex. J. Neurosci. 28, 10794–10802 (2008).

    Article  CAS  Google Scholar 

  22. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  23. Li, Y.X. et al. Expression of a dominant-negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 10884–10889 (1998).

    Article  CAS  Google Scholar 

  24. Binzegger, T., Douglas, R.J. & Martin, K.A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kohara, K. et al. A local reduction in cortical GABAergic synapses after a loss of endogenous brain-derived neurotrophic factor, as revealed by single-cell gene knock-out method. J. Neurosci. 27, 7234–7244 (2007).

    Article  CAS  Google Scholar 

  26. Bradley, A., Skottun, B.C., Ohzawa, I., Sclar, G. & Freeman, R.D. Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. J. Neurophysiol. 57, 755–772 (1987).

    Article  CAS  Google Scholar 

  27. Albrecht, D.G., Geisler, W.S., Frazor, R.A. & Crane, A.M. Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J. Neurophysiol. 88, 888–913 (2002).

    Article  Google Scholar 

  28. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  Google Scholar 

  29. Albrecht, D.G. & Hamilton, D.B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  Google Scholar 

  30. Bartoletti, A. et al. Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation. J. Neurosci. 22, 10072–10077 (2002).

    Article  CAS  Google Scholar 

  31. Kaneko, M., Hanover, J.L., England, P.M. & Stryker, M.P. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat. Neurosci. 11, 497–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Carmignoto, G., Pizzorusso, T., Tia, S. & Vicini, S. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex. J. Physiol. (Lond.) 498, 153–164 (1997).

    Article  CAS  Google Scholar 

  33. Heimel, J.A., Van Hooser, S.D. & Nelson, S.B. Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). J. Neurophysiol. 94, 3538–3554 (2005).

    Article  Google Scholar 

  34. Issa, N.P., Trepel, C. & Stryker, M.P. Spatial frequency maps in cat visual cortex. J. Neurosci. 20, 8504–8514 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Skottun, B.C., Bradley, A. & Ramoa, A.S. Effect of contrast on spatial frequency tuning of neurones in area 17 of cat's visual cortex. Exp. Brain Res. 63, 431–435 (1986).

    Article  CAS  Google Scholar 

  36. Sceniak, M.P., Hawken, M.J. & Shapley, R. Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size. J. Neurophysiol. 88, 1363–1373 (2002).

    Article  Google Scholar 

  37. Morrone, M.C., Burr, D.C. & Speed, H.D. Cross-orientation inhibition in cat is GABA mediated. Exp. Brain Res. 67, 635–644 (1987).

    Article  CAS  Google Scholar 

  38. Carandini, M. & Heeger, D.J. Summation and division by neurons in primate visual cortex. Science 264, 1333–1336 (1994).

    Article  CAS  Google Scholar 

  39. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  40. Sengpiel, F. & Vorobyov, V. Intracortical origins of interocular suppression in the visual cortex. J. Neurosci. 25, 6394–6400 (2005).

    Article  CAS  Google Scholar 

  41. Kayser, A., Priebe, N.J. & Miller, K.D. Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. J. Neurophysiol. 85, 2130–2149 (2001).

    Article  CAS  Google Scholar 

  42. Carandini, M., Heeger, D.J. & Senn, W. A synaptic explanation of suppression in visual cortex. J. Neurosci. 22, 10053–10065 (2002).

    Article  CAS  Google Scholar 

  43. Chance, F.S., Nelson, S.B. & Abbott, L.F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).

    Article  CAS  Google Scholar 

  44. van Rossum, M.C., van der Meer, M.A., Xiao, D. & Oram, M.W. Adaptive integration in the visual cortex by depressing recurrent cortical circuits. Neural Comput. 20, 1847–1872 (2008).

    Article  Google Scholar 

  45. Priebe, N.J. & Ferster, D. Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat. Neurosci. 9, 552–561 (2006).

    Article  CAS  Google Scholar 

  46. Li, B., Thompson, J.K., Duong, T., Peterson, M.R. & Freeman, R.D. Origins of cross-orientation suppression in the visual cortex. J. Neurophysiol. 96, 1755–1764 (2006).

    Article  Google Scholar 

  47. Bradley, A. & Freeman, R.D. Contrast sensitivity in anisometropic amblyopia. Invest. Ophthalmol. Vis. Sci. 21, 467–476 (1981).

    CAS  Google Scholar 

  48. Heynen, A.J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854–862 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Bartoletti, A., Medini, P., Berardi, N. & Maffei, L. Environmental enrichment prevents effects of dark-rearing in the rat visual cortex. Nat. Neurosci. 7, 215–216 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Nelson for reading the manuscript and, together with S. Van Hooser, for visual stimulation software, A. Maffei and C. de Zeeuw for discussions, R. Hartman for assistance with monocular deprivation, S. Škulj-Živkovic, S. Scheltinga and S. Riahi for genotyping and C. Pool and J. van Heerikhuize for puncta analysis macros. C.N.L., J.A.H. and J.M.H. were supported by SenterNovem BSIK grant 03053. S.C. was supported by Rotterdamse Vereniging Blindenbelangen, Algemeen Nederlandse Vereeniging ter Voorkoming van Blindheid and Stichting Blindenhulp. C.N.L. and M.H.S. were supported by a ZonMW Vidi grant.

Author information

Authors and Affiliations

Authors

Contributions

C.N.L. generated the TrkB.T1-EGFP mice. J.A.H. and C.N.L. devised the experiments and wrote the manuscript. J.A.H. performed the in vivo experiments and implemented the normalization model. M.H.S. carried out the slice experiments. S.C. analyzed parvalbumin puncta. J.M.H. assisted with imaging.

Corresponding author

Correspondence to J Alexander Heimel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Equations (PDF 4863 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimel, J., Saiepour, M., Chakravarthy, S. et al. Contrast gain control and cortical TrkB signaling shape visual acuity. Nat Neurosci 13, 642–648 (2010). https://doi.org/10.1038/nn.2534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing