Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep

Abstract

Osmoregulated vasopressin release is facilitated during the late sleep period (LSP) to prevent dehydration and enuresis. Previous work has shown that clock neurons in the suprachiasmatic nucleus (SCN) have low firing rates during the LSP, but it is not known how this reduced activity enhances vasopressin release. We found that synaptic excitation of rat supraoptic nucleus neurons by osmosensory afferents is facilitated during the LSP. Stimulation of the SCN at this time inhibited excitatory synaptic currents induced in supraoptic neurons by activation of osmosensory afferents. This effect was associated with an increased rate of synaptic failures and occurred without changes in frequency facilitation, quantal size or in the ratio of postsynaptic responses mediated by AMPA and NMDA receptors. We conclude that clock neurons mediate an activity-dependent presynaptic silencing of osmosensory afferent synapses onto vasopressin neurons and that osmoregulatory gain is enhanced by removal of this effect during late sleep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased osmoregulatory gain during LSP.
Figure 2: Firing rate of SCN neurons during the MSP and LSP in angled horizontal slices of rat hypothalamus.
Figure 3: Electrical stimulation of SCN inhibits OVLT-MNC synapses.
Figure 4: Excitation of SCN neurons inhibits OVLT-MNC synapses.
Figure 5: Excitation of SCN neurons inhibits activation of MNCs by osmotic stimulation of OVLT.
Figure 6: SCN activation inhibits OVLT-MNC synapses at a presynaptic locus.
Figure 7: Effects of SCN stimulation on synaptic failures and frequency facilitation.
Figure 8: SCN neurons modulate sEPSC frequency in MNCs.

Similar content being viewed by others

References

  1. Bicknell, R.J. Optimizing release from peptide hormone secretory nerve terminals. J. Exp. Biol. 139, 51–65 (1988).

    CAS  PubMed  Google Scholar 

  2. Bourque, C.W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    Article  CAS  Google Scholar 

  3. Robertson, G.L., Shelton, R.L. & Athar, S. The osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

    Article  CAS  Google Scholar 

  4. Forsling, M.L. Diurnal rhythms in neurohypophysial function. Exp. Physiol. 85, 179S–186S (2000).

    Article  CAS  Google Scholar 

  5. Miller, M. Nocturnal polyuria in older people: pathophysiology and clinical implications. J. Am. Geriatr. Soc. 48, 1321–1329 (2000).

    Article  CAS  Google Scholar 

  6. Granda, T.G., Velasco, A. & Rausch, A. Variations and interrelation between vasopressin and plasma osmolality in diabetic rats with insulin treatment. Life Sci. 63, 1305–1313 (1998).

    Article  CAS  Google Scholar 

  7. Gordon, C.R. & Lavie, P. Day-night variations in urine excretions and hormones in dogs: role of autonomic innervation. Physiol. Behav. 35, 175–181 (1985).

    Article  CAS  Google Scholar 

  8. Claybaugh, J.R., Sato, A.K., Crosswhite, L.K. & Hassell, L.H. Effects of time of day, gender, and menstrual cycle phase on the human response to a water load. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R966–R973 (2000).

    Article  CAS  Google Scholar 

  9. Richard, D. & Bourque, C.W. Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. J. Physiol. (Lond.) 489, 567–577 (1995).

    Article  CAS  Google Scholar 

  10. Ciura, S. & Bourque, C.W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 26, 9069–9075 (2006).

    Article  CAS  Google Scholar 

  11. Vivas, L., Chiaraviglio, E. & Carrer, H.F. Rat organum vasculosum laminae terminalis in vitro: responses to changes in sodium concentration. Brain Res. 519, 294–300 (1990).

    Article  CAS  Google Scholar 

  12. Trudel, E. & Bourque, C.W. A rat brain slice preserving synaptic connections between neurons of the suprachiasmatic nucleus, organum vasculosum lamina terminalis and supraoptic nucleus. J. Neurosci. Methods 128, 67–77 (2003).

    Article  Google Scholar 

  13. Maywood, E.S., O'Neill, J.S., Chesham, J.E. & Hastings, M.H. Minireview: The circadian clockwork of the suprachiasmatic nuclei—analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 148, 5624–5634 (2007).

    Article  CAS  Google Scholar 

  14. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  15. Brown, T.M. & Piggins, H.D. Electrophysiology of the suprachiasmatic circadian clock. Prog. Neurobiol. 82, 229–255 (2007).

    Article  CAS  Google Scholar 

  16. Kent, J. & Meredith, A.L. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus. PLoS One 3, e3884 (2008).

    Article  Google Scholar 

  17. Hallworth, R., Cato, M., Colbert, C. & Rea, M.A. Presynaptic adenosine A1 receptors regulate retinohypothalamic neurotransmission in the hamster suprachiasmatic nucleus. J. Neurobiol. 52, 230–240 (2002).

    Article  CAS  Google Scholar 

  18. Kalsbeek, A. & Buijs, R.M. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 309, 109–118 (2002).

    Article  CAS  Google Scholar 

  19. van den Pol, A.N. Glutamate and GABA presence and action in the suprachiasmatic nucleus. J. Biol. Rhythms 8 Suppl: S11–S15 (1993).

    PubMed  Google Scholar 

  20. Oliet, S.H. & Poulain, D.A. Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones. J. Physiol. (Lond.) 520, 815–825 (1999).

    Article  CAS  Google Scholar 

  21. Kombian, S.B., Zidichouski, J.A. & Pittman, Q.J. GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro. J. Neurophysiol. 76, 1166–1179 (1996).

    Article  CAS  Google Scholar 

  22. Schrader, L.A. & Tasker, J.G. Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. J. Neurophysiol. 77, 527–536 (1997).

    Article  CAS  Google Scholar 

  23. Hirasawa, M., Mouginot, D., Kozoriz, M.G., Kombian, S.B. & Pittman, Q.J. Vasopressin differentially modulates nonNMDA receptors in vasopressin and oxytocin neurons in the supraoptic nucleus. J. Neurosci. 23, 4270–4277 (2003).

    Article  CAS  Google Scholar 

  24. Derkach, V.A., Oh, M.C., Guire, E.S. & Soderling, T.R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat. Rev. Neurosci. 8, 101–113 (2007).

    Article  CAS  Google Scholar 

  25. Citri, A. & Malenka, R.C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    Article  Google Scholar 

  26. Iremonger, K.J. & Bains, J.S. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27, 6684–6691 (2007).

    Article  CAS  Google Scholar 

  27. Zucker, R.S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  Google Scholar 

  28. Raiteri, M. Presynaptic metabotropic glutamate and GABAB receptors. Handb. Exp. Pharmacol. 184, 373–407 (2008).

    Article  CAS  Google Scholar 

  29. Kolaj, M., Yang, C.R. & Renaud, L.P. Presynaptic GABA(B) receptors modulate organum vasculosum lamina terminalis-evoked postsynaptic currents in rat hypothalamic supraoptic neurons. Neuroscience 98, 129–133 (2000).

    Article  CAS  Google Scholar 

  30. Inouye, S.T. & Kawamura, H. Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76, 5962–5966 (1979).

    Article  CAS  Google Scholar 

  31. Shibata, S., Oomura, Y., Kita, H. & Hattori, K. Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res. 247, 154–158 (1982).

    Article  CAS  Google Scholar 

  32. Green, D.J. & Gillette, R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 245, 198–200 (1982).

    Article  CAS  Google Scholar 

  33. Groos, G. & Hendriks, J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci. Lett. 34, 283–288 (1982).

    Article  CAS  Google Scholar 

  34. Herzog, E.D., Takahashi, J.S. & Block, G.D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci. 1, 708–713 (1998).

    Article  CAS  Google Scholar 

  35. Brimble, M.J. & Dyball, R.E. Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J. Physiol. (Lond.) 271, 253–271 (1977).

    Article  CAS  Google Scholar 

  36. Brimble, M.J., Dyball, R.E. & Forsling, M.L. Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. J. Physiol. (Lond.) 278, 69–78 (1978).

    Article  CAS  Google Scholar 

  37. Huang, W., Lee, S.L. & Sjoquist, M. Natriuretic role of endogenous oxytocin in male rats infused with hypertonic NaCl. Am. J. Physiol. 268, R634–R640 (1995).

    CAS  PubMed  Google Scholar 

  38. Huang, W., Lee, S.L., Arnason, S.S. & Sjoquist, M. Dehydration natriuresis in male rats is mediated by oxytocin. Am. J. Physiol. 270, R427–R433 (1996).

    CAS  PubMed  Google Scholar 

  39. Verbalis, J.G., Mangione, M.P. & Stricker, E.M. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128, 1317–1322 (1991).

    Article  CAS  Google Scholar 

  40. Kalsbeek, A. et al. Minireview: circadian control of metabolism by the suprachiasmatic nuclei. Endocrinology 148, 5635–5639 (2007).

    Article  CAS  Google Scholar 

  41. Honda, K., Negoro, H., Higuchi, T. & Tadokoro, Y. The role of the anteroventral 3rd ventricle area in the osmotic control of paraventricular neurosecretory cells. Exp. Brain Res. 76, 497–502 (1989).

    Article  CAS  Google Scholar 

  42. Leng, G., Blackburn, R.E., Dyball, R.E. & Russell, J.A. Role of anterior peri-third ventricular structures in the regulation of supraoptic neuronal activity and neurohypophysial hormone secretion in the rat. J. Neuroendocrinol. 1, 35–46 (1989).

    Article  CAS  Google Scholar 

  43. Buijs, R.M. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 192, 423–435 (1978).

    Article  CAS  Google Scholar 

  44. Kombian, S.B., Mouginot, D. & Pittman, Q.J. Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro. Neuron 19, 903–912 (1997).

    Article  CAS  Google Scholar 

  45. Kombian, S.B., Mouginot, D., Hirasawa, M. & Pittman, Q.J. Vasopressin preferentially depresses excitatory over inhibitory synaptic transmission in the rat supraoptic nucleus in vitro. J. Neuroendocrinol. 12, 361–367 (2000).

    Article  CAS  Google Scholar 

  46. Bamford, N.S. et al. Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58, 89–103 (2008).

    Article  CAS  Google Scholar 

  47. Delaney, A.J., Crane, J.W. & Sah, P. Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 56, 880–892 (2007).

    Article  CAS  Google Scholar 

  48. Panatier, A., Gentles, S.J., Bourque, C.W. & Oliet, S.H. Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J. Physiol. (Lond.) 573, 711–721 (2006).

    Article  CAS  Google Scholar 

  49. Panatier, A. et al. Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784 (2006).

    Article  CAS  Google Scholar 

  50. Tully, K., Li, Y. & Bolshakov, V.Y. Keeping in check painful synapses in central amygdala. Neuron 56, 757–759 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K.K. Murai and W.T. Farmer (McGill University) for help with the anterograde experiments (Supplementary Fig. 2) and M. Henry and D. Mouginot (Laval University) for help with the retrograde labeling experiments (Supplementary Fig. 3). This work was supported by operating grant MOP-9939 from the Canadian Institutes of Health Research and a James McGill Chair to C.W.B. E.T. was a recipient of a Doctoral Studentship from the Heart and Stroke Foundation of Canada. The Research Institute of the McGill University Health Centre is supported by the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Contributions

All of the electrophysiological experiments, technical development and data analysis were performed by E.T. C.W.B. designed the experiments and wrote the paper in close consultation with E.T.

Corresponding author

Correspondence to Charles W Bourque.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trudel, E., Bourque, C. Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat Neurosci 13, 467–474 (2010). https://doi.org/10.1038/nn.2503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing