Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perceptual decision making in less than 30 milliseconds

Abstract

In perceptual discrimination tasks, a subject's response time is determined by both sensory and motor processes. Measuring the time consumed by the perceptual evaluation step alone is therefore complicated by factors such as motor preparation, task difficulty and speed-accuracy tradeoffs. Here we present a task design that minimizes these confounding factors and allows us to track a subject's perceptual performance with unprecedented temporal resolution. We find that monkeys can make accurate color discriminations in less than 30 ms. Furthermore, our simple task design provides a tool for elucidating how neuronal activity relates to sensory as opposed to motor processing, as demonstrated with neural data from cortical oculomotor neurons. In these cells, perceptual information acts by accelerating and decelerating the ongoing motor plans associated with correct and incorrect choices, as predicted by a race-to-threshold model, and the time course of these neural events parallels the time course of the subject's choice accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of events in the compelled-saccade task.
Figure 2: Oculomotor execution during the compelled-saccade task.
Figure 3: Behavioral and model performance in the compelled-saccade task.
Figure 4: Five trials of the race-to-threshold model.
Figure 5: Behavioral and model performance in the motor-bias experiment.
Figure 6: Oculomotor activity during the compelled-saccade task.
Figure 7: Sensory information accelerates oculomotor activity.

Similar content being viewed by others

References

  1. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysial performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ernst, M.O. & Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. McCoy, A.N. & Platt, M.L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Nieder, A. & Merten, K. A labeled-line code for small and large numerosities in the monkey prefrontal cortex. J. Neurosci. 27, 5986–5993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Churchland, A.K., Kiani, R. & Shadlen, M.N. Decision-making with multiple alternatives. Nat. Neurosci. 11, 693–702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu, Y., Angelaki, D.E. & DeAngelis, G.C. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11, 1201–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsumora, T., Koida, K. & Komatsu, H. Relationship between color discrimination and neural responses in the inferior temporal cortex of the monkey. J. Neurophysiol. 100, 3361–3374 (2008).

    Article  PubMed  Google Scholar 

  11. Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, Oxford, UK, 1986).

  12. Sanders, A.F. Elements of Human Performance: Reaction Processes and Attention in Human Skill (Erlbaum, Mahwah, New Jersey, USA, 1998).

  13. Paré, M. & Munoz, D.P. Saccadic reaction time in the monkey, advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. J. Neurophysiol. 76, 3666–3681 (1996).

    Article  PubMed  Google Scholar 

  14. Donders, F.C. 1868. On the speed of mental processes. Translated by W. G. Koster. Acta Psychol. (Amst.) 30, 412–431 (1969).

    Article  CAS  Google Scholar 

  15. Sternberg, S. High speed scanning in human memory. Science 153, 652–654 (1966).

    Article  CAS  PubMed  Google Scholar 

  16. Posner, M.I. Chronometric Explorations of Mind (Erlbaum, Hillsdale, New Jersey, USA, 1978).

  17. Meyer, D.E., Osman, A.M., Irwin, D.E. & Yantis, S. Modern mental chronometry. Biol. Psychol. 26, 3–67 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Bergen, J.R. & Julesz, B. Parallel versus serial processing in rapid pattern discrimination. Nature 303, 696–698 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Ratcliff, R. & Rouder, J.N. A diffusion model account of masking in two-choice letter identification. J. Exp. Psychol. Hum. Percept. Perform. 26, 127–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kiani, R., Hanks, T.D. & Shadlen, M.N. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J. Neurosci. 28, 3017–3029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Breitmeyer, B.G. & Ogmen, H. Recent models and findings in visual backward masking: a comparison, review, and update. Percept. Psychophys. 62, 1572–1595 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Breitmeyer, B.G., Ro, T. & Ogmen, H. A comparison of masking by visual and transcranial magnetic stimulation: implications for the study of conscious and unconscious visual processing. Conscious. Cogn. 13, 829–843 (2004).

    Article  PubMed  Google Scholar 

  23. Carpenter, R.H.S. & Williams, M.L.L. Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement inititation. Science 274, 427–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, P.L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Palmer, J., Huk, A.C. & Shadlen, M.N. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5, 376–404 (2005).

    Article  PubMed  Google Scholar 

  27. Lo, C.C. & Wang, X.J. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat. Neurosci. 9, 956–963 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wong, K.F. & Wang, X.J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boucher, L., Palmeri, T.J., Logan, G.D. & Schall, J.D. Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol. Rev. 114, 376–397 (2007).

    Article  PubMed  Google Scholar 

  30. Brown, S.D. & Heathcote, A. The simplest complete model of choice response time: linear ballistic accumulation. Cogn. Psychol. 57, 153–178 (2007).

    Article  Google Scholar 

  31. Ratcliff, R., Hasegawa, Y.T., Hasegawa, R.P., Smith, P.L. & Segraves, M.A. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).

    Article  PubMed  Google Scholar 

  32. Feng, S., Holmes, P., Rorie, A. & Newsome, W.T. Can monkeys choose optimally when faced with noisy stimuli and unequal rewards? PLoS Comput. Biol. 5, e1000284 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Herrnstein, R.J. Relative and absolute strength of responses as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4, 267–272 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soltani, A. & Wang, X.J. A biophysically based neural model of matching law behavior: melioration by stochastic synapses. J. Neurosci. 26, 3731–3744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Horwitz, G.D. & Newsome, W.T. Separate signals for target selection and movement specification in the superior colliculus. Science 284, 1158–1161 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, X.J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Schall, J.D. Neural correlates of decision processes: neural and mental chronometry. Curr. Opin. Neurobiol. 13, 182–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Beck, J.M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salinas, E. So many choices: what computational models reveal about decision-making mechanisms. Neuron 60, 946–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Bruce, C.J. & Goldberg, M.E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Hening, W., Favilla, M. & Ghez, C. Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Exp. Brain Res. 71, 116–128 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Ghez, C., Hening, W. & Favilla, M. Gradual specification of response amplitude in human tracking performance. Brain Behav. Evol. 33, 69–74 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Thompson, K.G., Hanes, D.P., Bichot, N.P. & Schall, J.D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Ludwig, C.J., Gilchrist, I.D., McSorley, E. & Baddeley, R.J. The temporal impulse response underlying saccadic decisions. J. Neurosci. 25, 9907–9912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghose, G.M. Strategies optimize the detection of motion transients. J. Vis. 6, 429–440 (2006).

    Article  PubMed  Google Scholar 

  46. Bodelón, C., Fallah, M. & Reynolds, J.H. Temporal resolution for the perception of features and conjunctions. J. Neurosci. 27, 725–730 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans (Society for Industrial and Applied Mathematics, Philadelphia, 1982).

  48. Davison, A.C. & Hinkley, D. Bootstrap Methods and Their Applications (Cambridge Univ. Press, Cambridge, UK, 2006).

  49. Siegel, S. & Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill, Boston, 1988).

Download references

Acknowledgements

Research was supported by the National Institutes of Health/National Eye Institute grant R01 EY12389 to T.R.S.

Author information

Authors and Affiliations

Authors

Contributions

T.R.S. conceived the task, supervised all experiments and data analyses, and co-wrote the manuscript; S.S. contributed to the collection, analysis and modeling of the behavioral data; D.P.M. contributed to the design of the experiments and to the collection of behavioral data; M.G.C. contributed to the collection of behavioral data and to the collection and analysis of neural data; E.S. developed the race model, contributed to the experimental design and data analysis and co-wrote the manuscript.

Corresponding author

Correspondence to Emilio Salinas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Notes 1–7 (PDF 220 kb)

Supplementary Movie 1 (AVI 4774 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanford, T., Shankar, S., Massoglia, D. et al. Perceptual decision making in less than 30 milliseconds. Nat Neurosci 13, 379–385 (2010). https://doi.org/10.1038/nn.2485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing