Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells

Abstract

Adult mammalian neurogenesis occurs in the hippocampus and the olfactory bulb, whereas neocortical adult neurogenesis remains controversial. Several occurrences of neocortical adult neurogenesis in injured neocortex were recently reported, suggesting that neural stem cells (NSCs) or neuronal progenitor cells (NPCs) that can be activated by injury are maintained in the adult brain. However, it is not clear whether or where neocortical NSCs/NPCs exist in the brain. We found NPCs in the neocortical layer 1 of adult rats and observed that their proliferation was highly activated by global forebrain ischemia. Using retrovirus-mediated labeling of layer 1 proliferating cells with membrane-targeted green fluorescent protein, we found that the newly generated neurons were GABAergic and that the neurons were functionally integrated into the neuronal circuitry. Our results suggest that layer 1 NPCs are a source of adult neurogenesis under ischemic conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of layer 1 proliferating cells.
Figure 2: Distribution of layer 1 proliferating cells in the control and ischemic brains.
Figure 3: Retrovirus-mediated GFP labeling of layer 1 proliferating cells.
Figure 4: Double-staining of layer 2–6 GFP-positive cells with cell markers.
Figure 5: Characterization of layer 2–6 GFP-positive cells with neurochemical markers.
Figure 6: Time course of the estimated number of layer 2–6 GFP-positive cells after ischemia.
Figure 7: Integration of new neurons into the neuronal circuitry after ischemia.

Similar content being viewed by others

References

  1. Gross, C.G. Neurogenesis in the adult brain: death of a dogma. Nat. Rev. Neurosci. 1, 67–73 (2000).

    Article  CAS  Google Scholar 

  2. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  Google Scholar 

  3. Gage, F.H. Mammalian neural stem cell. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  4. Abrous, D.N., Koehl, M. & Le Moal, M. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev. 85, 523–569 (2005).

    Article  CAS  Google Scholar 

  5. Altman, J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–591 (1963).

    Article  CAS  Google Scholar 

  6. Kaplan, M.S. Neurogenesis in the 3-month-old rat visual cortex. J. Comp. Neurol. 195, 323–338 (1981).

    Article  CAS  Google Scholar 

  7. Gould, E., Reeves, A.J., Graziano, M.S.A. & Gross, C.G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    Article  CAS  Google Scholar 

  8. Kornack, D.R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).

    Article  CAS  Google Scholar 

  9. Bernier, P.J., Bédard, A., Vinet, J., Lévesque, M. & Parent, A. Newly generated neurons in the amygdale and adjoining cortex of adult primates. Proc. Natl. Acad. Sci. USA 99, 11464–11469 (2002).

    Article  CAS  Google Scholar 

  10. Koketsu, D., Mikami, A., Miyamoto, Y. & Hisatsune, T. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci. 23, 937–942 (2003).

    Article  CAS  Google Scholar 

  11. Ehninger, D. & Kempermann, G. Regional effects of wheel running and environmental enrichment on cell genesis and migration proliferation in the adult murine neocortex. Cereb. Cortex 13, 845–851 (2003).

    Article  Google Scholar 

  12. Dayer, A.G., Cleaver, K.M., Abouantoun, T. & Cameron, H.A. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168, 415–427 (2005).

    Article  CAS  Google Scholar 

  13. Spalding, K.L., Bhardwaj, R.D., Buchholz, B.A., Druid, H. & Frisén, J. Retrospective birth dating of cells in humans. Cell 122, 133–143 (2005).

    Article  CAS  Google Scholar 

  14. Gu, W., Brännström, T. & Wester, P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J. Cereb. Blood Flow Metab. 20, 1166–1173 (2000).

    Article  CAS  Google Scholar 

  15. Magavi, S.S., Leavitt, B.R. & Macklis, J.D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  Google Scholar 

  16. Jiang, W. et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 32, 1201–1207 (2001).

    Article  CAS  Google Scholar 

  17. Jin, K. et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell. Neurosci. 24, 171–189 (2003).

    Article  CAS  Google Scholar 

  18. Sundholm-Peters, N.L. et al. Subventricular zone neuroblasts emigrate toward cortical lesions. J. Neuropathol. Exp. Neurol. 64, 1089–1100 (2005).

    Article  Google Scholar 

  19. Tonchev, A.B., Yamashima, T., Sawamoto, K. & Okano, H. Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J. Neurosci. Res. 81, 776–788 (2005).

    Article  CAS  Google Scholar 

  20. Jin, K. et al. Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl. Acad. Sci. USA 103, 13198–13202 (2006).

    Article  CAS  Google Scholar 

  21. Leker, R.R. et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38, 153–161 (2007).

    Article  Google Scholar 

  22. Yang, Z. et al. Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. Ann. Neurol. 61, 199–208 (2007).

    Article  CAS  Google Scholar 

  23. Stewart, R.R., Hogo, G.J., Zigova, T. & Luskin, M.B. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABAA receptors. J. Neurobiol. 50, 305–322 (2002).

    Article  CAS  Google Scholar 

  24. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    Article  CAS  Google Scholar 

  25. Cobos, I., Long, J.E., Thwin, M.T. & Rubenstein, J.L. Cellular patterns of transcription factor expression in developing cortical interneurons. Cereb. Cortex 16, i82–i88 (2006).

    Article  Google Scholar 

  26. Flames, N. et al. Delineation of multiple subpallial domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682–9695 (2007).

    Article  CAS  Google Scholar 

  27. Kameda, H. et al. Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci. Res. 61, 79–91 (2008).

    Article  CAS  Google Scholar 

  28. Kress, G.J. & Mennerick, S. Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 158, 211–222 (2009).

    Article  CAS  Google Scholar 

  29. Hioki, H. et al. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther. 14, 872–882 (2007).

    Article  CAS  Google Scholar 

  30. Nunes, M.C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447 (2003).

    Article  CAS  Google Scholar 

  31. Kubota, Y., Hattori, R. & Yui, Y. Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res. 649, 159–173 (1994).

    Article  CAS  Google Scholar 

  32. Xu, X., Roby, K.D. & Callaway, E.M. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J. Comp. Neurol. 499, 144–160 (2006).

    Article  CAS  Google Scholar 

  33. Ren, J.Q., Aika, Y., Heizmann, C.W. & Kosaka, T. Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp. Brain Res. 92, 1–14 (1992).

    Article  CAS  Google Scholar 

  34. Staiger, J.F. et al. Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 99, 7–16 (2000).

    Article  CAS  Google Scholar 

  35. Carlén, M. et al. Functional integration of adult-born neurons. Curr. Biol. 12, 606–608 (2002).

    Article  Google Scholar 

  36. Kee, N., Teixeira, C.M., Wang, A.H. & Frankland, P.W. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10, 355–362 (2007).

    Article  CAS  Google Scholar 

  37. Tashiro, A., Makino, H. & Gage, F.H. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J. Neurosci. 27, 3252–3259 (2007).

    Article  CAS  Google Scholar 

  38. Gass, P., Katsura, K., Zuschratter, W., Siesjö, B. & Kiessling, M. Hypoglycemia-elicited immediately early gene expression in neurons ad glia of the hippocampus: novel patterns of FOS, JUN and KROX expression following excitotoxic injury. J. Cereb. Blood Flow Metab. 15, 989–1001 (1995).

    Article  CAS  Google Scholar 

  39. Nag, S. Cold-injury of the cerebral cortex: immunolocalization of cellular proteins and blood-brain barrier permeability studies. J. Neuropathol. Exp. Neurol. 55, 880–888 (1996).

    Article  CAS  Google Scholar 

  40. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  Google Scholar 

  41. Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex. J. Neurosci. 21, 5607–5619 (2001).

    Article  CAS  Google Scholar 

  42. Jiménez, D., Rivera, R., López-Mascaraque, L. & De Carlos, J.A. Origin of the cortical layer I in rodents. Dev. Neurosci. 25, 105–115 (2003).

    Article  Google Scholar 

  43. Marín, O. & Rubenstein, J.L.R. Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483 (2003).

    Article  Google Scholar 

  44. Nery, S., Corbin, J.G. & Fishell, G. Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon. Cereb. Cortex 13, 895–903 (2003).

    Article  Google Scholar 

  45. Adams, R.D. & Victor, M. Principles of Neurology (McGraw-Hill, New York, 1977).

  46. Tallent, M.K. & Siggins, G.R. Somatostatin acts in CA1 and CA3 to reduce hippocampal epileptiform activity. J. Neurophysiol. 81, 1626–1635 (1999).

    Article  CAS  Google Scholar 

  47. Richichi, C. et al. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J. Neurosci. 24, 3051–3059 (2004).

    Article  CAS  Google Scholar 

  48. Sairanen, T.R., Lindsberg, P.J., Brenner, M., Carpén, O. & Sirén, A.-L. Differential cellular expression of tumor necrosis factor-α and type I tumor necrosis factor receptor after transient global forebrain ischemia. J. Neurol. Sci. 186, 87–99 (2001).

    Article  CAS  Google Scholar 

  49. Ohira, K. et al. A truncated tropo-myosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J. Neurosci. 25, 1343–1353 (2005).

    Article  CAS  Google Scholar 

  50. Kempermann, G., Kuhn, H.G. & Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank T.J. Hope for a kindly gift of WPRE, and K. Takumi, M. Itoh, T. Kunieda and H. Kameda for their experimental support. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (K.O., T.F., H.H., K.C.N., T.M., T.K. and S.N.) and the Organization for Pharmaceutical Safety and Research (S.N.), by the Cooperation Research Program of Primate Research Institute of Kyoto University (K.O.) and by the Core Research for Evolutional Science and Technology of Japan Science and Technology Agency (K.O., K.C.N., T.M., T.K. and S.N.).

Author information

Authors and Affiliations

Authors

Contributions

K.O. designed and performed most of the experiments and co-wrote the paper. T.F. and H.H. made the pBS-CMV-Fyn-GFP-WPRE and pENT-Synapsin I-Fyn-GFP-WPRE plasmids. K.C.N. made guinea pig and rabbit antibodies to GFP. E.K., Y.T., N.F., K.S., T.O., M.H. and T.M. supported the experiments. T.K. and S.N. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Koji Ohira or Takeshi Kaneko.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 3880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohira, K., Furuta, T., Hioki, H. et al. Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci 13, 173–179 (2010). https://doi.org/10.1038/nn.2473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing