Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf

Abstract

When the brain is deprived of input from one sensory modality, it often compensates with supranormal performance in one or more of the intact sensory systems. In the absence of acoustic input, it has been proposed that cross-modal reorganization of deaf auditory cortex may provide the neural substrate mediating compensatory visual function. We tested this hypothesis using a battery of visual psychophysical tasks and found that congenitally deaf cats, compared with hearing cats, have superior localization in the peripheral field and lower visual movement detection thresholds. In the deaf cats, reversible deactivation of posterior auditory cortex selectively eliminated superior visual localization abilities, whereas deactivation of the dorsal auditory cortex eliminated superior visual motion detection. Our results indicate that enhanced visual performance in the deaf is caused by cross-modal reorganization of deaf auditory cortex and it is possible to localize individual visual functions in discrete portions of reorganized auditory cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Performance of hearing and deaf cats on seven visual psychophysical tasks.
Figure 2: Cortical areas deactivated in deaf auditory cortex.
Figure 3: Visual localization task data from deaf cats during bilateral reversible deactivation of PAF, DZ, A1 and AAF.
Figure 4: Motion detection thresholds for the deaf cats before and after cooling deactivation and during bilateral reversible deactivation.
Figure 5: Performance of hearing cats on seven visual psychophysical tasks during simultaneous bilateral deactivation of PAF, DZ, A1 and AAF.
Figure 6: Thermal cortical maps constructed by generating Voronoi tessellations21 from 335 temperature recording sites during deactivation of each individual cooling loop.
Figure 7: Summary diagram illustrating the double-dissociation of visual functions in auditory cortex of the deaf cat.

Similar content being viewed by others

References

  1. Neville, H.J. & Lawson, D. Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res. 405, 268–283 (1987).

    Article  CAS  Google Scholar 

  2. Rauschecker, J.P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    Article  CAS  Google Scholar 

  3. Lessard, N., Paré, M., Lepore, F. & Lassonde, M. Early-blind human subjects localize sound sources better than sighted subjects. Nature 395, 278–280 (1998).

    Article  CAS  Google Scholar 

  4. Röder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).

    Article  Google Scholar 

  5. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  CAS  Google Scholar 

  6. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    Article  CAS  Google Scholar 

  7. Ptito, M., Moesgaard, S.M., Gjedde, A. & Kupers, R. Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128, 606–614 (2005).

    Article  Google Scholar 

  8. Bavelier, D., Dye, M.W.G. & Hauser, P.C. Do deaf individuals see better? Trends Cogn. Sci. 10, 512–518 (2006).

    Article  Google Scholar 

  9. Nishimura, H. et al. Sign language 'heard' in the auditory cortex. Nature 397, 116 (1999).

    Article  CAS  Google Scholar 

  10. Petitto, L.A. et al. Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc. Natl. Acad. Sci. USA 97, 13961–13966 (2000).

    Article  CAS  Google Scholar 

  11. Finney, E.M., Fine, I. & Dobkins, K.R. Visual stimuli activate auditory cortex in the deaf. Nat. Neurosci. 4, 1171–1173 (2001).

    Article  CAS  Google Scholar 

  12. Bavelier, D. & Neville, H.J. Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452 (2002).

    Article  CAS  Google Scholar 

  13. Kral, A. et al. Cochlear implants: cortical plasticity in congenital deprivation. Prog. Brain Res. 157, 283–313 (2006).

    Article  Google Scholar 

  14. Pasternak, T. & Merigan, W.H. Movement detection by cats: invariance with direction and target configuration. J. Comp. Physiol. Psychol. 94, 943–952 (1980).

    Article  CAS  Google Scholar 

  15. Lomber, S.G., Payne, B.R. & Horel, J.A. The cryoloop: An adaptable reversible cooling deactivation method for behavioral and electrophysiological assessment of neural function. J. Neurosci. Methods 86, 179–194 (1999).

    Article  CAS  Google Scholar 

  16. Malhotra, S. & Lomber, S.G. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. J. Neurophysiol. 97, 26–43 (2007).

    Article  Google Scholar 

  17. Malhotra, S., Stecker, G.C., Middlebrooks, J.C. & Lomber, S.G. Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J. Neurophysiol. 99, 1628–1642 (2008).

    Article  Google Scholar 

  18. Lomber, S.G. & Malhotra, S. Double dissociation of 'what' and 'where' processing in auditory cortex. Nat. Neurosci. 11, 609–616 (2008).

    Article  CAS  Google Scholar 

  19. He, J., Hashikawa, T., Ojima, H. & Kinouchi, Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J. Neurosci. 17, 2615–2625 (1997).

    Article  CAS  Google Scholar 

  20. Stecker, G.C., Harrington, I.A., Macpherson, E.A. & Middlebrooks, J.C. Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. J. Neurophysiol. 94, 1267–1280 (2005).

    Article  Google Scholar 

  21. Carrasco, A. & Lomber, S.G. Evidence for hierarchical processing in cat auditory cortex: nonreciprocal influence of primary auditory cortex on the posterior auditory field. J. Neurosci. 29, 14323–14333 (2009).

    Article  CAS  Google Scholar 

  22. Reale, R.A. & Imig, T.J. Tonotopic organization in auditory cortex of the cat. J. Comp. Neurol. 192, 265–291 (1980).

    Article  CAS  Google Scholar 

  23. Palmer, L.A., Rosenquist, A.C. & Tusa, R.J. The retinotopic organization of lateral suprasylvian visual areas in the cat. J. Comp. Neurol. 177, 237–256 (1978).

    Article  CAS  Google Scholar 

  24. Middlebrooks, J.C. & Zook, J.M. Intrinsic organization of the cat's medial geniculate body identified by projections to binaural response–specific bands in the primary auditory cortex. J. Neurosci. 1, 203–224 (1983).

    Article  Google Scholar 

  25. Knight, P.L. Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res. 130, 447–467 (1977).

    Article  CAS  Google Scholar 

  26. Yang, X.F., Kennedy, B.R., Lomber, S.G., Schmidt, R.E. & Rothman, S.M. Cooling produces minimal neuropathology in neocortex and hippocampus. Neurobiol. Dis. 23, 637–643 (2006).

    Article  CAS  Google Scholar 

  27. Bavelier, D. et al. Visual attention to the periphery is enhanced in congenitally deaf individuals. J. Neurosci. 20, RC93 (2000).

    Article  CAS  Google Scholar 

  28. Voss, P., Gougoux, F., Zattore, R.J., Lassonde, M. & Lepore, F. Differential occipital responses in early- and late-blind individuals during a sound discrimination task. Neuroimage 40, 746–758 (2008).

    Article  Google Scholar 

  29. Winters, B.D., Forwood, S.E., Cowell, R.A., Saksida, L.M. & Bussey, T.J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J. Neurosci. 24, 5901–5908 (2004).

    Article  CAS  Google Scholar 

  30. Collignon, O., Voss, P., Lassonde, M. & Lepore, F. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp. Brain Res. 192, 343–358 (2009).

    Article  Google Scholar 

  31. Merabet, L.B. & Pascual-Leone, A. Neural reorganization following sensory loss: the opportunity of change. Nat. Rev. Neurosci. 11, 44–52 (2010).

    Article  CAS  Google Scholar 

  32. Kral, A., Schröder, J.H., Klinke, R. & Engel, A.K. Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp. Brain Res. 153, 605–613 (2003).

    Article  CAS  Google Scholar 

  33. Stewart, D.L. & Starr, A. Absence of visually influenced cells in auditory cortex of normal and congenitally deaf cats. Exp. Neurol. 28, 525–528 (1970).

    Article  CAS  Google Scholar 

  34. Auer, E.T. Jr., Bernstein, L.E., Sunkarat, W. & Singh, M. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 18, 645–648 (2007).

    Article  Google Scholar 

  35. Bross, M. Residual sensory capacities of the deaf: a signal detection analysis of a visual discrimination task. Percept. Mot. Skills 48, 187–194 (1979).

    Article  CAS  Google Scholar 

  36. Finney, E.M. & Dobkins, K.R. Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language. Brain Res. Cogn. Brain Res. 11, 171–183 (2001).

    Article  CAS  Google Scholar 

  37. Reynolds, H.N. Effects of foveal stimulation on peripheral visual processing and laterality in deaf and hearing subjects. Am. J. Psychol. 106, 523–540 (1993).

    Article  CAS  Google Scholar 

  38. Brozinsky, C.J. & Bavelier, D. Motion velocity thresholds in deaf signers: changes in lateralization, but not in overall sensitivity. Brain Res. Cogn. Brain Res. 21, 1–10 (2004).

    Article  Google Scholar 

  39. Bosworth, R.G. & Dobkins, K.R. The effects of spatial attention on motion processing in deaf signers, hearing signers and hearing nonsigners. Brain Cogn. 49, 152–169 (2002).

    Article  Google Scholar 

  40. Lomber, S.G. Behavioral cartography of visual functions in cat parietal cortex: areal and laminar dissociations. Prog. Brain Res. 134, 265–284 (2001).

    Article  CAS  Google Scholar 

  41. Sur, M., Garraghty, P.E. & Roe, A.W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).

    Article  CAS  Google Scholar 

  42. Heid, S., Hartmann, R. & Klinke, R. A model for prelingual deafness, the congenitally deaf white cat—population statistics and degenerative changes. Hear. Res. 115, 101–112 (1998).

    Article  CAS  Google Scholar 

  43. Kral, A., Hartmann, R., Tillein, J., Heid, S. & Klinke, R. Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb. Cortex 12, 797–807 (2002).

    Article  CAS  Google Scholar 

  44. Levick, W.R., Thibos, L.N. & Morstyn, R. Retinal ganglion cells and optic decussation of white cats. Vision Res. 20, 1001–1006 (1980).

    Article  CAS  Google Scholar 

  45. Guillery, R.W., Hickey, T.L. & Spear, P.D. Do blue-eyed white cats have normal or abnormal retinofugal pathways? Invest. Ophthalmol. Vis. Sci. 21, 27–33 (1981).

    CAS  PubMed  Google Scholar 

  46. Berkley, M.A. Visual discriminations in the cat. in Animal Psychophysics: the Design and Conduct of Sensory Experiments (ed. W. Stebbins) 231–247 (Appleton Century-Crofts, New York, 1970).

  47. Lomber, S.G. & Payne, B.R. Task-specific reversal of visual hemineglect following bilateral reversible deactivation of posterior parietal cortex: a comparison with deactivation of the superior colliculus. Vis. Neurosci. 18, 487–499 (2001).

    Article  CAS  Google Scholar 

  48. Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467–477 (1971).

    Article  Google Scholar 

  49. Hall, S.E. & Mitchell, D.E. Grating acuity of cats measured with detection and discrimination tasks. Behav. Brain Res. 44, 1–9 (1991).

    Article  CAS  Google Scholar 

  50. Mellott, J.G. et al. Areas of the cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hear. Res. 267, 119–136 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.D. Corneil, M.A. Goodale, W.A. Roberts, D.F. Sherry, B. Timney and J. Snow for helpful discussions and comments on the project and manuscript. We thank A.J. McMillan and A. Carrasco for preparing all of the figures and for help with the preparation of the manuscript. We also thank A.J. McMillan for assistance with the fabrication of the cooling loops, surgical implantations and care of the animals. J.G. Mellott graciously assisted with the histological processing of the brains. We gratefully acknowledge the support of the Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, Deutsche Forschungsgemeinschaft and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.G.L. and A.K. conceived and designed the project. A.K. bred and provided the cats. All psychophysical work was performed or supervised by S.G.L. M.A.M. provided assistance with data analysis and interpretation. The manuscript was written and edited by all of the authors.

Corresponding author

Correspondence to Stephen G Lomber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1914 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomber, S., Meredith, M. & Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13, 1421–1427 (2010). https://doi.org/10.1038/nn.2653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing