Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

DNA methylation and memory formation

Abstract

Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation.
Figure 2: Potential mechanism for demethylation of methylated DNA.
Figure 3: Putative actions of cell-wide DNA methylation changes on neuronal function.

Similar content being viewed by others

References

  1. Mammen, A.L., Huganir, R.L. & O'Brien, R.J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crick, F. Memory and molecular turnover. Nature 312, 101 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Holliday, R. Is there an epigenetic component in long-term memory? J. Theor. Biol. 200, 339–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lisman, J.E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. USA 82, 3055–3057 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Razin, A. & Friedman, J. DNA methylation and its possible biological roles. Prog. Nucleic Acid Res. Mol. Biol. 25, 33–52 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Roberson, E.D. & Sweatt, J.D. Memory-forming chemical reactions. Rev. Neurosci. 12, 41–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Holliday, R. & Pugh, J.E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Klose, R.J. & Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wolffe, A.P., Jones, P.L. & Wade, P.A. DNA demethylation. Proc. Natl. Acad. Sci. USA 96, 5894–5896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, D.K., Guo, J.U., Ming, G.L. & Song, H. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8, 1526–1531 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Santos, K.F., Mazzola, T.N. & Carvalho, H.F. The prima donna of epigenetics: the regulation of gene expression by DNA methylation. Braz. J. Med. Biol. Res. 38, 1531–1541 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lubin, F.D., Roth, T.L. & Sweatt, J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, C.A. & Sweatt, J.D. Covalent modification of DNA regulates memory formation. Neuron 53, 857–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Morris, R.G., Garrud, P., Rawlins, J.N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Squire, L.R. Mechanisms of memory. Science 232, 1612–1619 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Levenson, J.M. et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 15763–15773 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, C.A., Campbell, S.L. & Sweatt, J.D. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn. Mem. 89, 599–603 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Miller, C.A. et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13, 664–666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrett, R.M. & Wood, M.A. Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn. Mem. 15, 460–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gräff, J. & Mansuy, I.M. Epigenetic codes in cognition and behaviour. Behav. Brain Res. 192, 70–87 (2008).

    Article  PubMed  Google Scholar 

  22. Lubin, F.D. & Sweatt, J.D. The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55, 942–957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swank, M.W. & Sweatt, J.D. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J. Neurosci. 21, 3383–3391 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wood, M.A., Hawk, J.D. & Abel, T. Combinatorial chromatin modifications and memory storage: a code for memory? Learn. Mem. 13, 241–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dulac, C. Brain function and chromatin plasticity. Nature 465, 728–735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gehring, M., Reik, W. & Henikoff, S. DNA demethylation by DNA repair. Trends Genet. 25, 82–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Niehrs, C. Active DNA demethylation and DNA repair. Differentiation 77, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 112–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  PubMed  Google Scholar 

  30. Ma, D.K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Jin, S.G., Guo, C. & Pfeifer, G.P. GADD45A does not promote DNA demethylation. PLoS Genet. 4, e1000013 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Szyf, M. Epigenetics, DNA methylation and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol. 49, 243–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Roth, T.L., Lubin, F.D., Funk, A.J. & Sweatt, J.D. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65, 760–769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weaver, I.C. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Weaver, I.C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25, 11045–11054 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Sananbenesi, F. & Fischer, A. The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biol. Chem. 390, 1145–1153 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl. Acad. Sci. USA 100, 6777–6782 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, S.E., Weaver, I.C., Meaney, M.J. & Szyf, M. Regional-specific global cytosine methylation and DNA methyltransferase expression in the adult rat hippocampus. Neurosci. Lett. 440, 49–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Ooi, S.K. & Bestor, T.H. The colorful history of active DNA demethylation. Cell 133, 1145–1148 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246–4253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomson, J.P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suzuki, M.M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J David Sweatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J., Sweatt, J. DNA methylation and memory formation. Nat Neurosci 13, 1319–1323 (2010). https://doi.org/10.1038/nn.2666

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing