Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials

Abstract

The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the computations performed on its afferent inputs. However, the spikes of such a neuron are a very low-dimensional and discrete projection of this continually evolving signal. We explored the possibility that the neuron′s efferent synapses perform the critical computational step of estimating the membrane potential trajectory from the spikes. We found that short-term changes in synaptic efficacy can be interpreted as implementing an optimal estimator of this trajectory. Short-term depression arose when presynaptic spiking was sufficiently intense as to reduce the uncertainty associated with the estimate; short-term facilitation reflected structural features of the statistics of the presynaptic neuron such as up and down states. Our analysis provides a unifying account of a powerful, but puzzling, form of plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimating the presynaptic membrane potential from spiking information.
Figure 2: Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.
Figure 3: The optimal estimator reproduces experimentally observed patterns of synaptic depression and facilitation.
Figure 4: Estimation performance of the presynaptic membrane potential.

Similar content being viewed by others

References

  1. Markram, H., Wu, Y. & Tosdyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 5323–5328 (1998).

    Article  CAS  Google Scholar 

  2. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  3. Abbott, L.F. & Regehr, W.G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  Google Scholar 

  4. Loebel, A. et al. Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Front. Comput. Neurosci. 3, 1–13 (2009).

    Article  Google Scholar 

  5. Pfister, J.P., Dayan, P. & Lengyel, M. Know thy neighbour: A normative theory of synaptic depression. in Advances in Neural Information Processing Systems 22 (eds. Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I. & Culotta, A.) 1464–1472 (2009).

  6. Dittman, J.S., Kreitzer, A. & Regehr, W.G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).

    Article  CAS  Google Scholar 

  7. Merkel, M. & Lindner, B. Synaptic filtering of rate-coded information. Phys. Rev. E 81, 041921 (2010).

    Article  Google Scholar 

  8. Abbott, L.F., Varela, J.A., Sen, K. & Nelson, S.B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  Google Scholar 

  9. Cook, D.L., Schwindt, P., Grande, L. & Spain, W. Synaptic depression in the localization of sound. Nature 421, 66–70 (2003).

    Article  CAS  Google Scholar 

  10. Goldman, M.S., Maldonado, P. & Abbott, L. Redundancy reduction and sustained firing with stochastic depressing synapses. J. Neurosci. 22, 584–591 (2002).

    Article  CAS  Google Scholar 

  11. Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).

    Article  CAS  Google Scholar 

  12. Carpenter, G. & Grossberg, S. Pattern Recognition by Self-Organizing Neural Networks (MIT Press, Cambridge, Massachusetts, 1991).

  13. Hasselmo, M.E. & Bower, J. Acetylcholine and memory. Trends Neurosci. 16, 218–222 (1993).

    Article  CAS  Google Scholar 

  14. Zador, A. Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol. 79, 1219–1229 (1998).

    Article  CAS  Google Scholar 

  15. de la Rocha, J., Nevado, A. & Parga, N. Information transmission by stochastic synapses with short-term depression: neural coding and optimization. Neurocomputing 44, 85–90 (2002).

    Article  Google Scholar 

  16. Pfister, J.P. & Lengyel, M. Speed versus accuracy in spiking attractor networks. in Front. Syst. Neurosci. Conference Abstract: Computational and Systems Neuroscience 2009 (2009).

  17. Wilson, H.R. & Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    Article  CAS  Google Scholar 

  18. Dayan, P. & Abbott, L.F. Theoretical Neuroscience (MIT Press, Cambridge, Massachusetts, 2001).

  19. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).

    Article  CAS  Google Scholar 

  20. Huys, Q.J., Zemel, R., Natarajan, R. & Dayan, P. Fast population coding. Neural Comput. 19, 404–441 (2007).

    Article  Google Scholar 

  21. Stanford, T.R., Shankar, S., Massoglia, D., Costello, M. & Salinas, E. Perceptual decision making in less than 30 milliseconds. Nat. Neurosci. 13, 379–385 (2010).

    Article  CAS  Google Scholar 

  22. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  Google Scholar 

  23. Lengyel, M., Kwag, J., Paulsen, O. & Dayan, P. Matching storage and recall: hippocampal spike timing–dependent plasticity and phase response curves. Nat. Neurosci. 8, 1677–1683 (2005).

    Article  CAS  Google Scholar 

  24. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  Google Scholar 

  25. Anderson, B. & Moore, J. Optimal Filtering (Prentice-Hall, Englewood Cliffs, New Jersey, 1979).

  26. Eden, U.T., Frank, L., Barbieri, R., Solo, V. & Brown, E. Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput. 16, 971–998 (2004).

    Article  Google Scholar 

  27. Paninski, L. The most likely voltage path and large deviations approximations for integrate-and-fire neurons. J. Comput. Neurosci. 21, 71–87 (2006).

    Article  Google Scholar 

  28. Bobrowski, O., Meir, R. & Eldar, Y. Bayesian filtering in spiking neural networks: noise, adaptation and multisensory integration. Neural Comput. 21, 1277–1320 (2009).

    Article  Google Scholar 

  29. Cunningham, J., Yu, B., Shenoy, K. & Sahani, M. Inferring neural firing rates from spike trains using Gaussian processes. in Advances in Neural Information Processing Systems 20 (eds. Platt, J., Koller, D., Singer, Y. & Roweis, S.) 329–336 (MIT Press, Cambridge, Massachusetts, 2008).

  30. Gerstner, W. & Kistler, W.K. Spiking Neuron Models (Cambridge University Press, Cambridge, 2002).

  31. Paninski, L., Pillow, J. & Simoncelli, E. Maximum likelihood estimate of a stochastic integrate-and-fire neural encoding model. Neural Comput. 16, 2533–2561 (2004).

    Article  Google Scholar 

  32. Stein, R.B. A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965).

    Article  CAS  Google Scholar 

  33. Lansky, P. & Ditlevsen, S. A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol. Cybern. 99, 253–262 (2008).

    Article  Google Scholar 

  34. Tsodyks, M., Pawelzik, K. & Markram, H. Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998).

    Article  CAS  Google Scholar 

  35. Shinomoto, S., Sakai, Y. & Funahashi, S. The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11, 935–951 (1999).

    Article  CAS  Google Scholar 

  36. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  Google Scholar 

  37. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003).

    Article  CAS  Google Scholar 

  38. Harvey, C.D., Collman, F., Dombeck, D. & Tank, D. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  CAS  Google Scholar 

  39. Dobrunz, L.E., Huang, E. & Stevens, C. Very short-term plasticity in hippocampal synapses. Proc. Natl. Acad. Sci. USA 94, 14843–14847 (1997).

    Article  CAS  Google Scholar 

  40. Chorev, E., Yarom, Y. & Lampl, I. Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J. Neurosci. 27, 5043–5052 (2007).

    Article  CAS  Google Scholar 

  41. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996).

    Article  CAS  Google Scholar 

  42. Thomson, A.M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000).

    Article  CAS  Google Scholar 

  43. Martin, S.J., Grimwood, P. & Morris, R. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  44. Manabe, T., Wyllie, D., Perkel, D. & Nicoll, R. Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J. Neurophysiol. 70, 1451 (1993).

    Article  CAS  Google Scholar 

  45. Reyes, A. et al. Target cell–specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  Google Scholar 

  46. Koester, H.J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  Google Scholar 

  47. Denève, S. Bayesian spiking neurons. I. inference. Neural Comput. 20, 91–117 (2008).

    Article  Google Scholar 

  48. Wark, B., Fairhall, A. & Rieke, F. Timescales of inference in visual adaptation. Neuron 61, 750–761 (2009).

    Article  CAS  Google Scholar 

  49. Jolivet, R., Rauch, A., Lüscher, H.R. & Gerstner, W. Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J. Comput. Neurosci. 21, 35–49 (2006).

    Article  Google Scholar 

  50. Doucet, A., De Freitas, N. & Gordon, N. Sequential Monte Carlo Methods in Practice (Springer, New York, 2001).

Download references

Acknowledgements

We thank M. Häusser and R. Brown for useful references and L. Abbott, Sz. Káli and members of the Budapest Computational Neuroscience Forum for valuable discussions. This work was supported by the Wellcome Trust (J.-P.P., M.L. and P.D.) and the Gatsby Charitable Foundation (P.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.-P.P. and M.L. developed the mathematical framework. J.-P.P. performed the numerical simulations. All of the authors wrote the manuscript.

Corresponding author

Correspondence to Jean-Pascal Pfister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Note (PDF 761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, JP., Dayan, P. & Lengyel, M. Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nat Neurosci 13, 1271–1275 (2010). https://doi.org/10.1038/nn.2640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing