Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal

A Corrigendum to this article was published on 01 May 2010

This article has been updated

Abstract

Although endocytosis maintains synaptic transmission, how endocytosis is initiated is unclear. We found that calcium influx initiated all forms of endocytosis at a single nerve terminal in rodents, including clathrin-dependent slow endocytosis, bulk endocytosis, rapid endocytosis and endocytosis overshoot (excess endocytosis), with each being evoked with a correspondingly higher calcium threshold. As calcium influx increased, endocytosis gradually switched from very slow endocytosis to slow endocytosis to bulk endocytosis to rapid endocytosis and to endocytosis overshoot. The calcium-induced endocytosis rate increase was a result of the speeding up of membrane invagination and fission. Pharmacological experiments suggested that the calcium sensor mediating these forms of endocytosis is calmodulin. In addition to its role in recycling vesicles, calcium/calmodulin-initiated endocytosis facilitated vesicle mobilization to the readily releasable pool, probably by clearing fused vesicle membrane at release sites. Our findings provide a unifying mechanism for the initiation of various forms of endocytosis that are critical in maintaining exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium influx triggers endocytosis.
Figure 2: Very slow endocytosis at a [Ca2+]i of 0.5–0.75 μM.
Figure 3: Calcium influx increases rateendo and triggers rapid endocytosis and endocytosis overshoot.
Figure 4: Calcium influx initiates bulk endocytosis and speeds up the fission pore closure rate.
Figure 5: Calmodulin blockers inhibit endocytosis.
Figure 6: Syt2 is not critical in mediating endocytosis.
Figure 7: CBD, calmidazolium and dynasore slow down the RRP replenishment.
Figure 8: Endocytosis overshoot retrieves vesicles stranded at the plasma membrane.

Similar content being viewed by others

Change history

  • 03 September 2009

    In the version of this article initially published, the units for the calcium concentration labels in Figure 2a,d are incorrect. The correct unit should be µM. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Wu, L.G., Ryan, T.A. & Lagnado, L. Modes of vesicle retrieval at ribbon synapses, calyx-type synapses and small central synapses. J. Neurosci. 27, 11793–11802 (2007).

    Article  CAS  Google Scholar 

  2. von Gersdorff, H. & Matthews, G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655 (1994).

    Article  CAS  Google Scholar 

  3. Sankaranarayanan, S. & Ryan, T.A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat. Neurosci. 4, 129–136 (2001).

    Article  CAS  Google Scholar 

  4. Neves, G., Gomis, A. & Lagnado, L. Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc. Natl. Acad. Sci. USA 98, 15282–15287 (2001).

    Article  CAS  Google Scholar 

  5. Poskanzer, K.E., Fetter, R.D. & Davis, G.W. Discrete residues in the c(2)b domain of synaptotagmin I independently specify endocytic rate and synaptic vesicle size. Neuron 50, 49–62 (2006).

    Article  CAS  Google Scholar 

  6. Wu, W., Xu, J., Wu, X.S. & Wu, L.G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25, 11676–11683 (2005).

    Article  CAS  Google Scholar 

  7. Wu, L.G. & Betz, W.J. Nerve activity, but not intracellular calcium, determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 769–779 (1996).

    Article  CAS  Google Scholar 

  8. Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapic endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA 92, 8328–8332 (1995).

    Article  CAS  Google Scholar 

  9. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  Google Scholar 

  10. Jockusch, W.J., Praefcke, G.J., McMahon, H.T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).

    Article  CAS  Google Scholar 

  11. Richards, D.A., Guatimosim, C. & Betz, W.J. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551–559 (2000).

    Article  CAS  Google Scholar 

  12. Holt, M., Cooke, A., Wu, M.M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci. 23, 1329–1339 (2003).

    Article  CAS  Google Scholar 

  13. Thomas, P., Lee, A.K., Wong, J.G. & Almers, W. A triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667–675 (1994).

    Article  CAS  Google Scholar 

  14. Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. J. Neurophysiol. 98, 3349–3359 (2007).

    Article  Google Scholar 

  15. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  Google Scholar 

  16. Smith, C. & Neher, E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J. Cell Biol. 139, 885–894 (1997).

    Article  CAS  Google Scholar 

  17. Balaji, J. & Ryan, T.A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl. Acad. Sci. USA 104, 20576–20581 (2007).

    Article  CAS  Google Scholar 

  18. Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681–690 (2001).

    Article  CAS  Google Scholar 

  19. Ceccarelli, B. & Hurlbut, W.P. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 87, 297–303 (1980).

    Article  CAS  Google Scholar 

  20. Henkel, A.W. & Betz, W.J. Monitoring of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1–43. Neuropharmacology 34, 1397–1406 (1995).

    Article  CAS  Google Scholar 

  21. Ramaswami, M., Krishnan, K.S. & Kelly, R.B. Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13, 363–375 (1994).

    Article  CAS  Google Scholar 

  22. Marks, B. & McMahon, H.T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).

    Article  CAS  Google Scholar 

  23. Cousin, M.A. & Robinson, P.J. Ba2+ does not support synaptic vesicle retrieval in rat cerebrocortical synaptosomes. Neurosci. Lett. 253, 1–4 (1998).

    Article  CAS  Google Scholar 

  24. Gad, H., Low, P., Zotova, E., Brodin, L. & Shupliakov, O. Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21, 607–616 (1998).

    Article  CAS  Google Scholar 

  25. Balaji, J., Armbruster, M. & Ryan, T.A. Calcium control of endocytic capacity at a CNS synapse. J. Neurosci. 28, 6742–6749 (2008).

    Article  CAS  Google Scholar 

  26. von Gersdorff, H. & Borst, J.G. Short-term plasticity at the calyx of held. Nat. Rev. Neurosci. 3, 53–64 (2002).

    Article  CAS  Google Scholar 

  27. Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127 (2005).

    Article  CAS  Google Scholar 

  28. Xu, J. et al. GTP-independent rapid and slow endocytosis at a central synapse. Nat. Neurosci. 11, 45–53 (2008).

    Article  CAS  Google Scholar 

  29. Wu, X.S. et al. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J. Neurosci. 27, 3046–3056 (2007).

    Article  CAS  Google Scholar 

  30. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    Article  Google Scholar 

  31. Kushmerick, C., Renden, R. & von Gersdorff, H. Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment. J. Neurosci. 26, 1366–1377 (2006).

    Article  CAS  Google Scholar 

  32. Wu, W. & Wu, L.G. Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proc. Natl. Acad. Sci. USA 104, 10234–10239 (2007).

    Article  CAS  Google Scholar 

  33. Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16, 195–205 (1996).

    Article  CAS  Google Scholar 

  34. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  Google Scholar 

  35. Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    Article  CAS  Google Scholar 

  36. Xu, J. & Wu, L.G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46, 633–645 (2005).

    Article  CAS  Google Scholar 

  37. Borst, J.G.G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  Google Scholar 

  38. Tadross, M.R., Dick, I.E. & Yue, D.T. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133, 1228–1240 (2008).

    Article  CAS  Google Scholar 

  39. Kopp-Scheinpflug, C., Tolnai, S., Malmierca, M.S. & Rubsamen, R. The medial nucleus of the trapezoid body: comparative physiology. Neuroscience 154, 160–170 (2008).

    Article  CAS  Google Scholar 

  40. Malgaroli, A. et al. Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 268, 1624–1628 (1995).

    Article  CAS  Google Scholar 

  41. Murthy, V.N. & Stevens, C.F. Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci. 2, 503–507 (1999).

    Article  CAS  Google Scholar 

  42. Ryan, T.A., Reuter, H. & Smith, S.J. Optical detection of a quantal presynaptic membrane turnover. Nature 388, 478–482 (1997).

    Article  CAS  Google Scholar 

  43. Pyle, J.L., Kavalali, E.T., Piedras-Renteria, E.S. & Tsien, R.W. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28, 221–231 (2000).

    Article  CAS  Google Scholar 

  44. Rizzoli, S.O. & Betz, W.J. The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037–2039 (2004).

    Article  CAS  Google Scholar 

  45. Nucifora, P.G. & Fox, A.P. Barium triggers rapid endocytosis in calf adrenal chromaffin cells. J. Physiol. (Lond.) 508, 483–494 (1998).

    Article  CAS  Google Scholar 

  46. Clayton, E.L., Evans, G.J. & Cousin, M.A. Activity-dependent control of bulk endocytosis by protein dephosphorylation in central nerve terminals. J. Physiol. (Lond.) 585, 687–691 (2007).

    Article  CAS  Google Scholar 

  47. Nicholson-Tomishima, K. & Ryan, T.A. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. Proc. Natl. Acad. Sci. USA 101, 16648–16652 (2004).

    Article  CAS  Google Scholar 

  48. Xu, J., Mashimo, T. & Sudhof, T.C. Synaptotagmin-1, -2 and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54, 567–581 (2007).

    Article  CAS  Google Scholar 

  49. Augustine, G.J. & Neher, E. Calcium requirements for secretion in bovine chromaffin cells. J. Physiol. (Lond.) 450, 247–271 (1992).

    Article  CAS  Google Scholar 

  50. Sankaranarayanan, S. & Ryan, T.A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Neurological Disorders and Stroke Intramural Research Program of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

X.-S.W. conducted the double-patch experiments for Figure 2 and many of the capacitance recordings for other figures. B.D.M. initiated the project, designed and conducted capacitance experiments and helped write the paper. J.X. and J.F. conducted capacitance experiments. L.X. performed the simulations. E.M. and R.A. provided the Syt2−/− mice. L.B. maintained the animal colonies and L.-G.W. supervised the project, designed experiments and wrote the paper.

Corresponding author

Correspondence to Ling-Gang Wu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Data 1, 2 and Supplementary Discussion (PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XS., McNeil, B., Xu, J. et al. Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12, 1003–1010 (2009). https://doi.org/10.1038/nn.2355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing