Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adult birdsong is actively maintained by error correction

Abstract

Humans learn to speak by a process of vocal imitation that requires the availability of auditory feedback. Similarly, young birds rely on auditory feedback when learning to imitate the songs of adult birds, providing one of the few examples of nonhuman vocal learning. However, although humans continue to use auditory feedback to correct vocal errors in adulthood, the mechanisms underlying the stability of adult birdsong are unknown. We found that, similar to human speech, adult birdsong is maintained by error correction. We perturbed the pitch (fundamental frequency) of auditory feedback in adult Bengalese finches using custom-designed headphones. Birds compensated for the imposed auditory error by adjusting the pitch of song. When the perturbation was removed, pitch returned to baseline. Our results indicate that adult birds correct vocal errors by comparing auditory feedback to a sensory target and suggest that lifelong error correction is a general principle of learned vocal behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Technique for manipulating auditory feedback.
Figure 2: Vocal error correction driven by an upward shift in the pitch of auditory feedback.
Figure 3: Error correction in response to upward and downward shifts in feedback pitch.

Similar content being viewed by others

References

  1. Konishi, M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22, 770–783 (1965).

    CAS  PubMed  Google Scholar 

  2. Kuhl, P.K. Learning and representation in speech and language. Curr. Opin. Neurobiol. 4, 812–822 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, A.P. The effects of castration on song development in zebra finches (Poephila guttata). J. Exp. Zool. 191, 261–278 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Olveczky, B.P., Andalman, A.S. & Fee, M.S. Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol. 3, e153 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kao, M.H., Doupe, A.J. & Brainard, M.S. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433, 638–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kuhl, P.K. et al. Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Phil. Trans. R. Soc. Lond. B 363, 979–1000 (2008).

    Article  Google Scholar 

  7. Doupe, A.J. & Kuhl, P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Houde, J.F. & Jordan, M.I. Sensorimotor adaptation in speech production. Science 279, 1213–1216 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, J.A. & Munhall, K.G. Perceptual calibration of F0 production: evidence from feedback perturbation. J. Acoust. Soc. Am. 108, 1246–1251 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Leonardo, A. & Konishi, M. Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399, 466–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Nordeen, K.W. & Nordeen, E.J. Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav. Neural Biol. 57, 58–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Woolley, S.M. & Rubel, E.W. Bengalese finches Lonchura striata domestica depend upon auditory feedback for the maintenance of adult song. J. Neurosci. 17, 6380–6390 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tumer, E.C. & Brainard, M.S. Performance variability enables adaptive plasticity of 'crystallized' adult birdsong. Nature 450, 1240–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Tchernichovski, O., Mitra, P.P., Lints, T. & Nottebohm, F. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Okanoya, K. & Yamaguchi, A. Adult Bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. J. Neurobiol. 33, 343–356 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Brainard, M.S. & Doupe, A.J. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404, 762–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Linkenhoker, B.A. & Knudsen, E.I. Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419, 293–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Choe, C.S. & Welch, R.B. Variables affecting the intermanual transfer and decay of prism adaptation. J. Exp. Psychol. 102, 1076–1084 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Sober, S.J. & Sabes, P.N. Flexible strategies for sensory integration during motor planning. Nat. Neurosci. 8, 490–497 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suthers, R.A., Goller, F. & Wild, J.M. Somatosensory feedback modulates the respiratory motor program of crystallized birdsong. Proc. Natl. Acad. Sci. USA 99, 5680–5685 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolpert, D.M., Ghahramani, Z. & Jordan, M.I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Troyer, T.W. & Doupe, A.J. An associational model of birdsong sensorimotor learning. I. Efference copy and the learning of song syllables. J. Neurophysiol. 84, 1204–1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Nottebohm, F. The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann. NY Acad. Sci. 1016, 628–658 (2004).

    Article  PubMed  Google Scholar 

  24. Wilbrecht, L. & Kirn, J.R. Neuron addition and loss in the song system: regulation and function. Ann. NY Acad. Sci. 1016, 659–683 (2004).

    Article  PubMed  Google Scholar 

  25. Mooney, R. Synaptic mechanisms for auditory-vocal integration and the correction of vocal errors. Ann. NY Acad. Sci. 1016, 476–494 (2004).

    Article  PubMed  Google Scholar 

  26. Woolley, S.M. & Rubel, E.W. Vocal memory and learning in adult Bengalese finches with regenerated hair cells. J. Neurosci. 22, 7774–7787 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson, J.A., Wu, W., Bertram, R. & Johnson, F. Auditory-dependent vocal recovery in adult male zebra finches is facilitated by lesion of a forebrain pathway that includes the basal ganglia. J. Neurosci. 27, 12308–12320 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tchernichovski, O., Lints, T., Mitra, P.P. & Nottebohm, F. Vocal imitation in zebra finches is inversely related to model abundance. Proc. Natl. Acad. Sci. USA 96, 12901–12904 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adret, P. In search of the song template. Ann. NY Acad. Sci. 1016, 303–324 (2004).

    Article  PubMed  Google Scholar 

  30. Derégnaucourt, S. et al. Song development: in search of the error-signal. Ann. NY Acad. Sci. 1016, 364–376 (2004).

    Article  PubMed  Google Scholar 

  31. Clayton, D.F. Songbird genomics: methods, mechanisms, opportunities, and pitfalls. Ann. NY Acad. Sci. 1016, 45–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. White, S.A. Learning to communicate. Curr. Opin. Neurobiol. 11, 510–520 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Sabes and A. Doupe for critical discussions, T. Warren, K. Bouchard and L. Didier-Sober for technical assistance and J. Wong and R. Mazumder for animal care. This work was supported by the Helen Hay Whitney Foundation (S.J.S.), a McKnight Scholar Award (M.S.B.) and US National Institutes of Health grants R01DC006636 and P50MH77970.

Author information

Authors and Affiliations

Authors

Contributions

S.J.S. and M.S.B. designed the experiments and wrote the paper. S.J.S. designed and built the experimental apparatus, conducted the experiments and analyzed the data.

Corresponding author

Correspondence to Samuel J Sober.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sober, S., Brainard, M. Adult birdsong is actively maintained by error correction. Nat Neurosci 12, 927–931 (2009). https://doi.org/10.1038/nn.2336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing