Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons

Abstract

In the nose, odorants are detected on the cilia of olfactory sensory neurons (OSNs), where a cAMP-mediated signaling pathway transforms odor stimulation into electrical responses. Phosphodiesterase (PDE) activity in OSN cilia has long been thought to account for rapid response termination by degrading odor-induced cAMP. Two PDEs with distinct cellular localization have been found in OSNs: PDE1C in the cilia and PDE4A throughout the cell but absent from the cilia. We disrupted both of these genes in mice and carried out electro-olfactogram analysis. Unexpectedly, eliminating PDE1C did not prolong response termination. Prolonged termination occurred only in mice that lacked both PDEs, suggesting that cAMP degradation by PDE1C in cilia is not a rate-limiting factor for response termination in wild-type mice. Pde1c−/− OSNs instead showed reduced sensitivity and attenuated adaptation to repeated stimulation, suggesting that PDE1C may be involved in regulating sensitivity and adaptation. Our observations provide new perspectives on the regulation of olfactory transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular characterization of Pde1c−/−, Pde4a−/− and Pde1c−/−; Pde4a−/− mice.
Figure 2: Pde1c−/− OSNs show reduced EOG amplitude, faster response termination and slower onset kinetics.
Figure 3: Knockout of PDE1C eliminates all PDE activity from OSN cilia.
Figure 4: Pde4a−/− OSNs show no aberrant EOG response properties.
Figure 5: Pde1c−/−; Pde4a−/− double knockout mice show prolonged response termination and increased baseline noise.
Figure 6: OSN adaptation is differently affected in Pde1c−/− and Pde1c−/−; Pde4a−/− mice.
Figure 7: Computer modeling of degradation and diffusion of cilial cAMP.

Similar content being viewed by others

References

  1. Firestein, S., Shepherd, G.M. & Werblin, F.S. Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones. J. Physiol. (Lond.) 430, 135–158 (1990).

    Article  CAS  Google Scholar 

  2. Lowe, G. & Gold, G.H. The spatial distributions of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells. J. Physiol. (Lond.) 442, 147–168 (1991).

    Article  CAS  Google Scholar 

  3. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).

    Article  CAS  Google Scholar 

  4. Ma, M. Encoding olfactory signals via multiple chemosensory systems. Crit. Rev. Biochem. Mol. Biol. 42, 463–480 (2007).

    Article  CAS  Google Scholar 

  5. Kurahashi, T. & Yau, K.W. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363, 71–74 (1993).

    Article  CAS  Google Scholar 

  6. Kleene, S.J. Origin of the chloride current in olfactory transduction. Neuron 11, 123–132 (1993).

    Article  CAS  Google Scholar 

  7. Lowe, G. & Gold, G.H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993).

    Article  CAS  Google Scholar 

  8. Reisert, J., Bauer, P.J., Yau, K.W. & Frings, S. The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J. Gen. Physiol. 122, 349–363 (2003).

    Article  CAS  Google Scholar 

  9. Firestein, S., Darrow, B. & Shepherd, G.M. Activation of the sensory current in salamander olfactory receptor neurons depends on a G protein–mediated cAMP second messenger system. Neuron 6, 825–835 (1991).

    Article  CAS  Google Scholar 

  10. Boekhoff, I. & Breer, H. Termination of second messenger signaling in olfaction. Proc. Natl. Acad. Sci. USA 89, 471–474 (1992).

    Article  CAS  Google Scholar 

  11. Yan, C. et al. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 92, 9677–9681 (1995).

    Article  CAS  Google Scholar 

  12. Yan, C., Zhao, A.Z., Bentley, J.K. & Beavo, J.A. The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J. Biol. Chem. 271, 25699–25706 (1996).

    Article  CAS  Google Scholar 

  13. Cherry, J.A. & Davis, R.L. A mouse homolog of dunce, a gene important for learning and memory in Drosophila, is preferentially expressed in olfactory receptor neurons. J. Neurobiol. 28, 102–113 (1995).

    Article  CAS  Google Scholar 

  14. Juilfs, D.M. et al. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase–D define a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. USA 94, 3388–3395 (1997).

    Article  CAS  Google Scholar 

  15. Conti, M. & Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481–511 (2007).

    Article  CAS  Google Scholar 

  16. Borisy, F.F. et al. Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J. Neurosci. 12, 915–923 (1992).

    Article  CAS  Google Scholar 

  17. Scott, J.W. & Scott-Johnson, P.E. The electroolfactogram: a review of its history and uses. Microsc. Res. Tech. 58, 152–160 (2002).

    Article  Google Scholar 

  18. Song, Y. et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination, but not sensitivity to recurring stimulation. Neuron 58, 374–386 (2008).

    Article  CAS  Google Scholar 

  19. Leinders-Zufall, T., Ma, M. & Zufall, F. Impaired odor adaptation in olfactory receptor neurons after inhibition of Ca2+/calmodulin kinase II. J. Neurosci. 19, RC19 (1999).

    Article  CAS  Google Scholar 

  20. Zufall, F. & Leinders-Zufall, T. The cellular and molecular basis of odor adaptation. Chem. Senses 25, 473–481 (2000).

    Article  CAS  Google Scholar 

  21. Boccaccio, A., Lagostena, L., Hagen, V. & Menini, A. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J. Gen. Physiol. 128, 171–184 (2006).

    Article  CAS  Google Scholar 

  22. Chen, C., Nakamura, T. & Koutalos, Y. Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys. J. 76, 2861–2867 (1999).

    Article  CAS  Google Scholar 

  23. Kaupp, U.B. & Seifert, R. Cyclic nucleotide–gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  Google Scholar 

  24. Reisert, J. & Matthews, H.R. Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J. Gen. Physiol. 112, 529–535 (1998).

    Article  CAS  Google Scholar 

  25. Willoughby, D. & Cooper, D.M. Live-cell imaging of cAMP dynamics. Nat. Methods 5, 29–36 (2008).

    Article  CAS  Google Scholar 

  26. Leinders-Zufall, T. et al. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. USA 104, 14507–14512 (2007).

    Article  CAS  Google Scholar 

  27. Hu, J. et al. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317, 953–957 (2007).

    Article  CAS  Google Scholar 

  28. Wong, S.T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    Article  CAS  Google Scholar 

  29. Ma, M., Chen, W.R. & Shepherd, G.M. Electrophysiological characterization of rat and mouse olfactory receptor neurons from an intact epithelial preparation. J. Neurosci. Methods 92, 31–40 (1999).

    Article  CAS  Google Scholar 

  30. Kurahashi, T. Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J. Physiol. (Lond.) 419, 177–192 (1989).

    Article  CAS  Google Scholar 

  31. Firestein, S. & Werblin, F. Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science 244, 79–82 (1989).

    Article  CAS  Google Scholar 

  32. Wei, J. et al. Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: a mechanism for attenuation of olfactory signals. Neuron 21, 495–504 (1998).

    Article  CAS  Google Scholar 

  33. Chen, T.Y. & Yau, K.W. Direct modulation by Ca2+-calmodulin of cyclic nucleotide–activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994).

    Article  CAS  Google Scholar 

  34. Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    Article  CAS  Google Scholar 

  35. Bradley, J., Reuter, D. & Frings, S. Facilitation of calmodulin-mediated odor adaptation by cAMP-gated channel subunits. Science 294, 2176–2178 (2001).

    Article  CAS  Google Scholar 

  36. Munger, S.D. et al. Central role of the CNGA4 channel subunit in Ca2+-calmodulin–dependent odor adaptation. Science 294, 2172–2175 (2001).

    Article  CAS  Google Scholar 

  37. Anholt, R.R., Aebi, U. & Snyder, S.H. A partially purified preparation of isolated chemosensory cilia from the olfactory epithelium of the bullfrog, Rana catesbeiana. J. Neurosci. 6, 1962–1969 (1986).

    Article  CAS  Google Scholar 

  38. Zhao, H. et al. Functional expression of a mammalian odorant receptor. Science 279, 237–242 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Beavo for antibody to PDE1C2, J. Cherry for antibody to PDE4A and F. Margolis for antibody to OMP. We also thank L. Brand, R. Cone, S. Hattar, R. Kuruvilla, T. Leinders-Zufall, R. Reed, J. Reisert and Y. Song for suggestions and comments on experiments and the manuscript, and members of the Hattar, Kuruvilla, Zhao laboratory for discussion. This work was supported by US National Institutes of Health National Institute on Deafness and other Communications Disorders grant DC007395.

Author information

Authors and Affiliations

Authors

Contributions

K.D.C. and H.Z. designed the experiments, K.D.C. collected the data, and both authors wrote the manuscript.

Corresponding author

Correspondence to Haiqing Zhao.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2, and Supplementary Note (PDF 3424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cygnar, K., Zhao, H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci 12, 454–462 (2009). https://doi.org/10.1038/nn.2289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing