NOTCH MAINTAINS EPENDYMAL CELLS (PP 243 AND 259)

Bright light vision requires rapid regeneration of the photosensitive chromophore in cone photoreceptors. In this issue, Wang and colleagues demonstrate that such rapid regeneration in salamanders is accomplished via a pathway that resides in retinal Muller glia, with the final step being performed in the cones themselves. (p 295)
ARTICLES

259 Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke

268 Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning
N-J Xu & M Henkemeyer

277 Selective regulation of long-form calcium-permeable AMPA receptors by TARP γ-5
D Soto, I D Coombs, M Renzi, M Zonouzi, M Farrant & S G Cull-Candy

286 Slow glycinergic transmission mediated by transmitter pooling
V Balakrishnan, S P Kuo, P D Roberts & L O Trussell

295 Intra-retinal visual cycle required for rapid and complete cone dark adaptation
J-S Wang, M E Estevez, M C Cornwall & V J Kefalov

303 Role of the synaptic ribbon in transmitting the cone light response
S L Jackman, S-Y Choi, W B Thoreson, K Rabl, T M Bartoletti & R H Kramer

311 Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology
N Ballas, D T Lioy, C Grunseich & G Mandel

318 Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron
S Peron & F Gabbiani

327 Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons
Y M Elyada, J Haag & A Borst

333 Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill
H H Yin, S P Mulcare, M R F Hilário, E Clouse, T Holloway, M I Davis, A C Hansson, D M Lovinger & R M Costa

342 Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse

349 An electrophysiological signature of unconscious recognition memory
J L Voss & K A Paller

RESOURCE

356 An anatomic gene expression atlas of the adult mouse brain

NATURE NEUROSCIENCE CLASSIFIED

See back pages.