Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Trait anxiety and impoverished prefrontal control of attention

Abstract

Many neurocognitive models of anxiety emphasize the importance of a hyper-responsive threat-detection system centered on the amygdala, with recent accounts incorporating a role for prefrontal mechanisms in regulating attention to threat. Here we investigated whether trait anxiety is associated with a much broader dysregulation of attentional control. Volunteers performed a response-conflict task under conditions that posed high or low demands on attention. High trait-anxious individuals showed reduced prefrontal activity and slower target identification in response to processing competition when the task did not fully occupy attentional resources. The relationship between trait anxiety and prefrontal recruitment remained after controlling for state anxiety. These findings indicate that trait anxiety is linked to impoverished recruitment of prefrontal attentional control mechanisms to inhibit distractor processing even when threat-related stimuli are absent. Notably, this deficit was observed when ongoing task-related demands on attention were low, potentially explaining the day-to-day difficulties in concentration that are associated with clinical anxiety.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example stimuli.
Figure 2: DLPFC activity to incongruent – congruent distractors under low versus high perceptual load against STAI trait anxiety.
Figure 3: Neural regions showing increased activation under conditions of high versus low perceptual load.
Figure 4: PFC activity and target identification reaction times and error rates for the high and low perceptual-load blocks as a function of STAI trait anxiety.
Figure 5: Participant mean reaction times as a function of distractor congruency (congruent, incongruent) and perceptual load (low, high).

Similar content being viewed by others

References

  1. Kessler, R.C., Chiu, W.T., Demler, O., Merikangas, K.R. & Walters, E.E. Prevalence, severity and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    PubMed  PubMed Central  Google Scholar 

  2. MacLeod, C., Mathews, A. & Tata, P. Attentional bias in emotional disorders. J. Abnorm. Psychol. 95, 15–20 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Williams, J.M., Mathews, A. & MacLeod, C. The emotional Stroop task and psychopathology. Psychol. Bull. 120, 3–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Mathews, A., Mackintosh, B. & Fulcher, E. Cognitive biases in anxiety and attention to threat. Trends Cogn. Sci. 1, 340–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bishop, S., Duncan, J., Brett, M. & Lawrence, A.D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat. Neurosci. 7, 184–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Ohman, A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30, 953–958 (2005).

    Article  PubMed  Google Scholar 

  7. Bishop, S.J., Duncan, J. & Lawrence, A.D. State anxiety modulation of the amygdala response to unattended threat-related stimuli. J. Neurosci. 24, 10364–10368 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bishop, S.J., Jenkins, R. & Lawrence, A.D. Neural processing of fearful faces: effects of anxiety are gated by perceptual capacity limitations. Cereb. Cortex 17, 1595–1603 (2007).

    Article  PubMed  Google Scholar 

  9. Mandler, G. & Sarason, S.B. A study of anxiety and learning. J. Abnorm. Psychol. 47, 166–173 (1952).

    CAS  PubMed  Google Scholar 

  10. Fox, E. Attentional bias in anxiety: selective or not? Behav. Res. Ther. 31, 487–493 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Eysenck, M.W. & Calvo, M.G. Anxiety and performance: the processing efficiency theory. Cogn. Emot. 6, 409–434 (1992).

    Article  Google Scholar 

  12. MacDonald, A.W., III, Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Miller, E.K. & Cohen, J.D. Integrative theory of PFC function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kerns, J.G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Durston, S. et al. Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage 20, 2135–2141 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lavie, N. Selective attention and cognitive control: dissociating attentional functions through different types of load. in Control of Cognitive Processes: Attention & Performance. Vol. 18 (eds. Monsell, S. & Driver, J.) 175–194 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  18. Lavie, N. Distracted and confused? Selective attention under load. Trends Cogn. Sci. 9, 75–82 (2005).

    Article  PubMed  Google Scholar 

  19. Maylor, E.A. & Lavie, N. The influence of perceptual load on age differences in selective attention. Psychol. Aging 13, 563–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Huang-Pollock, C.L., Carr, T.H. & Nigg, J.T. Development of selective attention: perceptual load influences early versus late attentional selection in children and adults. Dev. Psychol. 38, 363–375 (2002).

    Article  PubMed  Google Scholar 

  21. Forster, S. & Lavie, N. High perceptual load makes everybody equal: eliminating individual differences in distractibility with load. Psychol. Sci. 18, 377–381 (2007).

    Article  PubMed  Google Scholar 

  22. Eysenck, M.W., Derakshan, N., Santos, R. & Calvo, M.G. Anxiety and cognitive performance: attentional control theory. Emotion 7, 336–353 (2007).

    Article  PubMed  Google Scholar 

  23. Visscher, K.M. et al. Mixed blocked/event-related designs separate transient and sustained activity in fMRI. Neuroimage 19, 1694–1708 (2003).

    Article  PubMed  Google Scholar 

  24. Spielberger, C.D. Manual for the State Trait Anxiety Inventory (Consulting Psychologists Press, Palo Alto, California, 1983).

    Google Scholar 

  25. Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Duncan, J. & Owen, A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Duncan, J. EPS Mid-Career Award 2004: brain mechanisms of attention. Q. J. Exp. Psychol. 59, 2–27 (2006).

    Article  Google Scholar 

  28. Jenkins, R., Lavie, N. & Driver, J. Recognition memory for distractor faces depends on attentional load at exposure. Psychon. Bull. Rev. 12, 314–320 (2005).

    Article  PubMed  Google Scholar 

  29. Carter, C.S. et al. Parsing executive processes: strategic versus evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 97, 1944–1948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barrett, L.F., Tugade, M.M. & Engle, R.W. Individual differences in working memory capacity and dual-process theories of the mind. Psychol. Bull. 130, 553–573 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Fockert, J.W., Rees, G., Frith, C.D. & Lavie, N. The role of working memory in visual selective attention. Science 291, 1803–1806 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Z. & Chan, C.C. Distractor interference stays constant despite variation in working memory load. Psychon. Bull. Rev. 14, 306–312 (2007).

    Article  PubMed  Google Scholar 

  33. Kim, S.Y., Kim, M.S. & Chun, M.M. Concurrent working memory load can reduce distraction. Proc. Natl. Acad. Sci. USA 102, 16524–16529 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Cohen, J.D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Kane, M.J. & Engle, R.W. Working-memory capacity, proactive interference and divided attention: limits on long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 26, 336–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Derakshan, N. & Eysenck, M.W. Working memory capacity in high trait anxious individuals and repressors. Cogn. Emot. 12, 697–713 (1998).

    Article  Google Scholar 

  38. Elia, J., Ambrosini, P. & Berrettini, W. ADHD characteristics. I. Concurrent co-morbidity patterns in children and adolescents. Child Adolesc. Psychiatry Ment. Health. 2, 15 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hiott, D.W. & Labbate, L. Anxiety disorders associated with traumatic brain injuries. NeuroRehabilitation 17, 345–355 (2002).

    PubMed  Google Scholar 

  40. Lang, P.J., Davis, M. & Ohman, A. Fear and anxiety: animal models and human cognitive psychophysiology. J. Affect. Disord. 61, 137–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Owen, A.M. The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Bush, G., Luu, P. & Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks go to J. Duncan for comments on a draft manuscript, radiographers H. Lloyd and S. Eldridge for assistance with fMRI data collection, and to S. Strangeways for assistance with figure preparation. This work was funded by the UK Medical Research Council through a Medical Research Council Career Development Award (G120/919) held at the University of Cambridge Behavioral and Clinical Neuroscience Institute, with additional resources being provided by the Medical Research Council Cognition and Brain Sciences Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia J Bishop.

Supplementary information

Supplementary Text and Figures

Supplementary Note (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, S. Trait anxiety and impoverished prefrontal control of attention. Nat Neurosci 12, 92–98 (2009). https://doi.org/10.1038/nn.2242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing