Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seizure termination by acidosis depends on ASIC1a

Abstract

Most seizures stop spontaneously; however, the molecular mechanisms that terminate seizures remain unknown. Observations that seizures reduced brain pH and that acidosis inhibited seizures indicate that acidosis halts epileptic activity. Because acid-sensing ion channel 1a (ASIC1a) is exquisitely sensitive to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a, which would terminate seizures. Disrupting mouse ASIC1a increased the severity of chemoconvulsant-induced seizures, whereas overexpressing ASIC1a had the opposite effect. ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and prevented seizure progression. CO2 inhalation, long known to lower brain pH and inhibit seizures, required ASIC1a to interrupt tonic-clonic seizures. Acidosis activated inhibitory interneurons through ASIC1a, suggesting that ASIC1a might limit seizures by increasing inhibitory tone. Our results identify ASIC1a as an important element in seizure termination when brain pH falls and suggest both a molecular mechanism for how the brain stops seizures and new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASIC1a reduces seizure severity.
Figure 2: ASIC1a disruption increases seizure duration and progression.
Figure 3: ASIC1a disruption reduces postictal depression.
Figure 4: ASIC1a mediates the antiepileptic effects of acid in hippocampal slices.
Figure 5: Inhibitory interneurons have prominent ASIC1a currents.
Figure 6: ASIC1a mediates the seizure-terminating effects of 10% CO2.

Similar content being viewed by others

References

  1. Noebels, J.L. The biology of epilepsy genes. Annu. Rev. Neurosci. 26, 599–625 (2003).

    Article  CAS  Google Scholar 

  2. Spencer, S.S. & Spencer, D.D. Implications of seizure termination location in temporal lobe epilepsy. Epilepsia 37, 455–458 (1996).

    Article  CAS  Google Scholar 

  3. Bragin, A., Penttonen, M. & Buzsaki, G. Termination of epileptic afterdischarge in the hippocampus. J. Neurosci. 17, 2567–2579 (1997).

    Article  CAS  Google Scholar 

  4. Chapman, A.G., Meldrum, B.S. & Siesjo, B.K. Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28, 1025–1035 (1977).

    Article  CAS  Google Scholar 

  5. Freund, T.F., Buzsaki, G., Prohaska, O.J., Leon, A. & Somogyi, P. Simultaneous recording of local electrical activity, partial oxygen tension and temperature in the rat hippocampus with a chamber-type microelectrode. Effects of anaesthesia, ischemia and epilepsy. Neuroscience 28, 539–549 (1989).

    Article  CAS  Google Scholar 

  6. Kloiber, O., Bockhorst, K., Hoehn-Berlage, M. & Hossmann, K.A. Effect of hypoxia on bicuculline seizures of rat: NMR spectroscopy and bioluminescence imaging. NMR Biomed. 6, 333–338 (1993).

    Article  CAS  Google Scholar 

  7. Yamada, K. et al. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292, 1543–1546 (2001).

    Article  CAS  Google Scholar 

  8. Kirchner, A., Veliskova, J. & Velisek, L. Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur. J. Neurosci. 23, 1512–1522 (2006).

    Article  Google Scholar 

  9. Haglund, M.M. & Schwartzkroin, P.A. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J. Neurophysiol. 63, 225–239 (1990).

    Article  CAS  Google Scholar 

  10. Somjen, G.G. Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression. Brain Res. 311, 186–188 (1984).

    Article  CAS  Google Scholar 

  11. Wang, R.I. & Sonnenschein, R.R. pH of cerebral cortex during induced convulsions. J. Neurophysiol. 18, 130–137 (1955).

    Article  CAS  Google Scholar 

  12. Kaila, K. & Chesler, M. Activity-evoked changes in extracellular pH. in pH and Brain Function (ed. K. Kaila & B.R. Ransom) 309 (Wiley-Liss, New York, 1998).

    Google Scholar 

  13. Lennox, W.G. The effect on epileptic seizures of varying the composition of the respired air. J. Clin. Invest. 4, 23–24 (1929).

    Google Scholar 

  14. Mitchell, W.G. & Grubbs, R.C. Inhibition of audiogenic seizures by carbon dioxide. Science 123, 223–224 (1956).

    Article  CAS  Google Scholar 

  15. Woodbury, D.M., Rollins, L.T., Henrie, J.R., Jones, J.C. & Sato, T. Effects of carbon dioxide and oxygen on properties of experimental seizures in mice. Am. J. Physiol. 184, 202–208 (1956).

    Article  CAS  Google Scholar 

  16. Velisek, L., Dreier, J.P., Stanton, P.K., Heinemann, U. & Moshe, S.L. Lowering of extracellular pH suppresses low-Mg2+–induces seizures in combined entorhinal cortex–hippocampal slices. Exp. Brain Res. 101, 44–52 (1994).

    Article  CAS  Google Scholar 

  17. Traynelis, S.F. & Cull-Candy, S.G. Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345, 347–350 (1990).

    Article  CAS  Google Scholar 

  18. Somjen, G.G. & Tombaugh, G.C. pH modulation of neuronal excitability and central nervous system functions. in pH and Brain Function (ed. K. Kaila & B.R. Ransom) 373–393 (Wiley-Liss, New York, 1998).

    Google Scholar 

  19. Dulla, C.G. et al. Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48, 1011–1023 (2005).

    Article  CAS  Google Scholar 

  20. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid sensing. Nature 386, 173–177 (1997).

    Article  CAS  Google Scholar 

  21. García-Añoveros, J., Derfler, B., Neville-Golden, J., Hyman, B.T. & Corey, D.P. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc. Natl. Acad. Sci. USA 94, 1459–1464 (1997).

    Article  Google Scholar 

  22. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997).

    Article  CAS  Google Scholar 

  23. Benson, C.J. et al. Heteromultimerics of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc. Natl. Acad. Sci. USA 99, 2338–2343 (2002).

    Article  CAS  Google Scholar 

  24. Wemmie, J.A. et al. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23, 5496–5502 (2003).

    Article  CAS  Google Scholar 

  25. Alvarez de la Rosa, D. et al. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. (Lond.) 546, 77–87 (2003).

    Article  CAS  Google Scholar 

  26. Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M. & Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 101, 6752–6757 (2004).

    Article  CAS  Google Scholar 

  27. Zha, X-M., Wemmie, J.A. & Welsh, M.J. ASIC1a is a postsynaptic proton receptor that influences the density of dendritic spines. Proc. Natl. Acad. Sci. USA 103, 16556–16561 (2006).

    Article  CAS  Google Scholar 

  28. Wemmie, J.A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning and memory. Neuron 34, 463–477 (2002).

    Article  CAS  Google Scholar 

  29. Xiong, Z.G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).

    Article  CAS  Google Scholar 

  30. Gruol, D.L., Barker, J.L., Huang, L.Y., MacDonald, J.F. & Smith, T.G., Jr. Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain Res. 183, 247–252 (1980).

    Article  CAS  Google Scholar 

  31. Vukicevic, M. & Kellenberger, S. Modulatory effects of acid-sensing ion channels (ASICs) on action potential generation in hippocampal neurons. Am. J. Physiol. Cell Physiol. 287, C682–C690 (2004).

    Article  CAS  Google Scholar 

  32. Bolshakov, K.V. et al. Characterization of acid-sensitive ion channels in freshly isolated rat brain neurons. Neuroscience 110, 723–730 (2002).

    Article  CAS  Google Scholar 

  33. Dubberke, R., Vasilets, L.A. & Schwarz, W. Inhibition of the Na+, K+ pump by the epileptogenic pentylenetetrazole. Pflugers Arch. 437, 79–85 (1998).

    Article  CAS  Google Scholar 

  34. Fisher, R.S. Animal models of the epilepsies. Brain Res. Brain Rs. Rev. 14, 245–278 (1989).

    Article  CAS  Google Scholar 

  35. Cole, T.B., Robbins, C.A., Wenzel, H.J., Schwartzkroin, P.A. & Palmiter, R.D. Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 39, 153–169 (2000).

    Article  CAS  Google Scholar 

  36. Escoubas, P. et al. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, 25116–25121 (2000).

    Article  CAS  Google Scholar 

  37. Coryell, M.W. et al. Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biol. Psychiatry 62, 1140–1148 (2007).

    Article  CAS  Google Scholar 

  38. Wemmie, J.A. et al. Overexpression of acid-sensing ion channel 1a in transgenic mice increases fear-related behavior. Proc. Natl. Acad. Sci. USA 101, 3621–3626 (2004).

    Article  CAS  Google Scholar 

  39. Mares, P. & Kubova, H. Electrical stimulation-induced models of seizures. in Models of Seizures and Epilepsy (ed. A. Pitkänen, P.A. Schwartzkroin & S.L. Moshé) 153–159 (Elsevier Academic Press, New York, 2006).

    Chapter  Google Scholar 

  40. Buckmaster, P.S. & Wong, E.H. Evoked responses of the dentate gyrus during seizures in developing gerbils with inherited epilepsy. J. Neurophysiol. 88, 783–793 (2002).

    Article  Google Scholar 

  41. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  42. Tschirgi, R.D. & Taylor, J.L. Slowly changing bioelectric potentials associated with the blood-brain barrier. Am. J. Physiol. 195, 7–22 (1958).

    Article  CAS  Google Scholar 

  43. Meduna, L.J. The physiological basis of carbon dioxide treatment. in Carbon Dioxide Therapy (ed. L.J. Meduna) 3–19 (Charles C Thomas, Springfield, Illinois, 1958).

    Google Scholar 

  44. Waxman, S.G. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nat. Neurosci. 10, 405–409 (2007).

    Article  CAS  Google Scholar 

  45. Friese, M.A. et al. Acid-sensing ion channel 1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat. Med. 13, 1483–1489 (2007).

    Article  CAS  Google Scholar 

  46. Immke, D.C. & McCleskey, E.W. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 4, 869–870 (2001).

    Article  CAS  Google Scholar 

  47. Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    Article  CAS  Google Scholar 

  48. Bernard, C. Hippocampal slices: designing and interpreting studies in epilepsy research. in Models of Seizures and Epilepsy (eds. A. Pitkänen, P. Schwartzkroin & S. Moshé) 59–72 (Elsevier Academic Press, New York, 2006).

    Chapter  Google Scholar 

  49. Anderson, W.W., Swartzwelder, H.S. & Wilson, W.A. The NMDA receptor antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis, but not epileptiform bursting, in the rat hippocampal slice. J. Neurophysiol. 57, 1–21 (1987).

    Article  CAS  Google Scholar 

  50. Kay, A.R. & Wong, R.K. Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J. Neurosci. Methods 16, 227–328 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J.M. Haenfler and A. Wunsch for excellent technical assistance, D.R. Langbehn and B. Zimmerman for assisting with statistical analysis, C.K. Kovach for assistance with EEG equipment and analysis, and F. Abboud and V. Snitsarev for assistance with EEG computational analysis. A.E.Z. was supported by the University of Iowa Interdisciplinary Training Program in Pain Research (US National Institute of Neurological Disorders and Stroke T32NS045549). M.J.W. is an Investigator of the Howard Hughes Medical Institute. J.A.W. was supported by US National Institute of Neurological Disorders and Stroke grant 1R21NS058309-01A1, a Veteran's Administration Advanced Career Development Award and a Research Initiatives grant from the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

A.E.Z. helped to generate the hypotheses for ASIC1a involvement in seizures, carried out the slice and in vivo electrophysiology/behavioral experiments, assessed seizure threshold, measured brain pH in response to seizures and CO2, assisted in studies using acutely dissociated neurons, wrote initial manuscript drafts and worked closely with other authors in editing the figures and manuscript. M.K.S. initiated, conceived, performed and interpreted electrophysiological experiments in dissociated neurons and assisted in preparation of the manuscript. M.A.S. helped to carry out and interpret the EEG experiments. G.W.A. assisted with seizure threshold studies. M.A.H. provided EEG equipment and helped with EEG interpretation. M.J.W. provided important overall direction and initiation for the project, contributed to experimental design and data interpretation, provided funding and wrote the manuscript. J.A.W. initiated development of the project, led experimental direction, interpreted data, carried out pilot experiments, provided funding and wrote the manuscript.

Corresponding authors

Correspondence to Michael J Welsh or John A Wemmie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemann, A., Schnizler, M., Albert, G. et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11, 816–822 (2008). https://doi.org/10.1038/nn.2132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing