Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area

Abstract

This study aimed to identify neural mechanisms that underlie perceptual learning in a visual-discrimination task. We trained two monkeys (Macaca mulatta) to determine the direction of visual motion while we recorded from their middle temporal area (MT), which in trained monkeys represents motion information that is used to solve the task, and lateral intraparietal area (LIP), which represents the transformation of motion information into a saccadic choice. During training, improved behavioral sensitivity to weak motion signals was accompanied by changes in motion-driven responses of neurons in LIP, but not in MT. The time course and magnitude of the changes in LIP correlated with the changes in behavioral sensitivity throughout training. Thus, for this task, perceptual learning does not appear to involve improvements in how sensory information is represented in the brain, but rather how the sensory representation is interpreted to form the decision that guides behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task and anatomical localization.
Figure 2: Behavior.
Figure 3: MT responses.
Figure 4: LIP responses.
Figure 5: Relationship between the coherence- and time-dependent LIP responses (k3, equation (3)) and various behavioral, motor and motivational parameters.
Figure 6: Decision model.
Figure 7: Specificity of learning.

Similar content being viewed by others

References

  1. Goldstone, R.L. Perceptual learning. Annu. Rev. Psychol. 49, 585–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88, 4966–4970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mollon, J.D. & Danilova, M.V. Three remarks on perceptual learning. Spat. Vis. 10, 51–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Dosher, B.A. & Lu, Z.L. Mechanisms of perceptual learning. Vision Res. 39, 3197–3221 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A. & Dinse, H.R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practicing orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Crist, R.E., Li, W. & Gilbert, C.D. Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4, 519–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ghose, G.M., Yang, T. & Maunsell, J.H. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2002).

    Article  PubMed  Google Scholar 

  10. Yang, T. & Maunsell, J.H. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24, 1617–1626 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raiguel, S., Vogels, R., Mysore, S.G. & Orban, G.A. Learning to see the difference specifically alters the most informative V4 neurons. J. Neurosci. 26, 6589–6602 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 90, 5718–5722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saarinen, J. & Levi, D.M. Perceptual learning in vernier acuity: what is learned? Vision Res. 35, 519–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Li, W., Piech, V. & Gilbert, C.D. Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7, 651–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maunsell, J.H. & Van Essen, D.C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Newsome, W.T. & Pare, E.B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salzman, C.D., Britten, K.H. & Newsome, W.T. Cortical microstimulation influences perceptual judgments of motion direction. Nature 346, 174–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Snyder, L.H., Batista, A.P. & Andersen, R.A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanks, T.D., Ditterich, J. & Shadlen, M.N. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9, 682–689 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Horwitz, G.D. & Newsome, W.T. Separate signals for target selection and movement specification in the superior colliculus. Science 284, 1158–1161 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J.N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  PubMed  Google Scholar 

  29. Gold, J.I. & Shadlen, M.N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zohary, E., Celebrini, S., Britten, K.H. & Newsome, W.T. Neuronal plasticity that underlies improvement in perceptual performance. Science 263, 1289–1292 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eckhoff, P., Holmes, P., Law, C., Connolly, P.M. & Gold, J.I. On diffusion processes with variable drift rates as models for decision making during learning. New J. Phys. 10, 015006 (2007); doi:10.1088/1367-2630/10/1/015006.

    Article  Google Scholar 

  33. Ball, K. & Sekuler, R. A specific and enduring improvement in visual motion discrimination. Science 218, 697–698 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Z. & Weinshall, D. Mechanisms of generalization in perceptual learning. Vision Res. 40, 97–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Movshon, J.A. & Newsome, W.T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16, 7733–7741 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furmanski, C.S., Schluppeck, D. & Engel, S.A. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14, 573–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Pleger, B. et al. Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40, 643–653 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Bao, S., Chang, E.F., Woods, J. & Merzenich, M.M. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nat. Neurosci. 7, 974–981 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Blake, D.T., Heiser, M.A., Caywood, M. & Merzenich, M.M. Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron 52, 371–381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freedman, D.J. & Assad, J.A. Experience-dependent representation of visual categories in parietal cortex. Nature 443, 85–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Grunewald, A., Linden, J.F. & Andersen, R.A. Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. J. Neurophysiol. 82, 330–342 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Hall, G. Perceptual and Associative Learning (Oxford University Press, Oxford, 1991).

    Book  Google Scholar 

  44. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Seidemann, E. & Newsome, W.T. Effect of spatial attention on the responses of area MT neurons. J. Neurophysiol. 81, 1783–1794 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Sereno, A.B. & Amador, S.C. Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. J. Neurophysiol. 95, 1078–1098 (2006).

    Article  PubMed  Google Scholar 

  47. Vaina, L.M., Belliveau, J.W., des Roziers, E.B. & Zeffiro, T.A. Neural systems underlying learning and representation of global motion. Proc. Natl. Acad. Sci. USA 95, 12657–12662 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fine, I. & Jacobs, R.A. Comparing perceptual learning tasks: a review. J. Vis. 2, 190–203 (2002).

    PubMed  Google Scholar 

  49. Cox, R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Van Essen, D.C. Organization of visual areas in macaque and human cerebral cortex. in The Visual Neurosciences (eds. Chalupa, L. & Werner, J.S.) 507–521 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

Download references

Acknowledgements

We thank M. Shadlen, L. Ding, M. Nassar, B. Heasley, R. Kalwani, P. Connolly, C.-L. Teng and S. Bennur for helpful comments on this manuscript and J. Zweigle for expert technical assistance. This research was supported by the Sloan Foundation, the McKnight Foundation, the Burroughs-Wellcome Fund and the US National Institutes of Health (R01-EY015260 and T32-EY007035).

Author information

Authors and Affiliations

Authors

Contributions

J.I.G. planned and supervised the study. C.L. conducted the experiments and data analyses. C.L. and J.I.G. wrote the manuscript together.

Corresponding author

Correspondence to Joshua I Gold.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Table 1 (PDF 7828 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, CT., Gold, J. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci 11, 505–513 (2008). https://doi.org/10.1038/nn2070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing