Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury

Abstract

Dorsal root injury results in substantial and often irreversible loss of sensory functions as a result of the limited regenerative capacity of sensory axons and the inhibitory barriers that prevent both axonal entry into and regeneration in the spinal cord. Here, we describe previously unknown effects of the growth factor artemin after crush injury of the dorsal spinal nerve roots in rats. Artemin not only promoted re-entry of multiple classes of sensory fibers into the spinal cord and re-establishment of synaptic function and simple behavior, but it also, surprisingly, promoted the recovery of complex behavior. These effects occurred after a 2-week schedule of intermittent, systemic administration of artemin and persisted for at least 6 months following treatment, suggesting a substantial translational advantage. Systemic artemin administration produced essentially complete and persistent restoration of nociceptive and sensorimotor functions, and could represent a promising therapy that may effectively promote sensory neuronal regeneration and functional recovery after injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systemic artemin administration promotes axonal growth across the DREZ into the spinal cord.
Figure 2: Systemic artemin administration restores nociceptive responses.
Figure 3: Quantification in the ipsilateral dorsal horn of formalin-induced Fos expression and evoked NK1-R internalization after carrageenan-induced inflammation.
Figure 4: Systemic artemin administration restores synaptic responses from sensory afferent fibers in spinal neurons.
Figure 5: Systemic artemin administration promotes recovery of sensorimotor function.
Figure 6: Systemic artemin administration increases CTB labeling in cuneate nucleus at 6 months.
Figure 7: Systemic artemin administration increases retrodgrade labeling of DRG neurons from the dorsal horn.
Figure 8: Systemic artemin normalizes expression of GFRα3 and RET.

Similar content being viewed by others

References

  1. Al-Qattan, M.M. Obstetric brachial plexus palsy associated with breech delivery. Ann. Plast. Surg. 51, 257–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Qiu, J., Cafferty, W.B., McMahon, S.B. & Thompson, S.W. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J. Neurosci. 25, 1645–1653 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fraher, J.P. The transitional zone and CNS regeneration. J. Anat. 196, 137–158 (2000).

    PubMed  Google Scholar 

  4. Neumann, S., Skinner, K. & Basbaum, A.I. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc. Natl. Acad. Sci. USA 102, 16848–16852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Starkey, M.L. et al. Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp. Neurol. 195, 524–539 (2005).

    Article  PubMed  Google Scholar 

  6. Wong, L.F. et al. Retinoic acid receptor β2 promotes functional regeneration of sensory axons in the spinal cord. Nat. Neurosci. 9, 243–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Woolf, C.J. & Bloechlinger, S. Neuroscience. It takes more than two to Nogo. Science 297, 1132–1134 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Ramer, L.M., Borisoff, J.F. & Ramer, M.S. Rho-kinase inhibition enhances axonal plasticity and attenuates cold hyperalgesia after dorsal rhizotomy. J. Neurosci. 24, 10796–10805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlstedt, T. Regenerating axons form nerve terminals at astrocytes. Brain Res. 347, 188–191 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Ramer, M.S., Priestley, J.V. & McMahon, S.B. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ramer, M.S. et al. Neurotrophin-3–mediated regeneration and recovery of proprioception following dorsal rhizotomy. Mol. Cell Neurosci. 19, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ramer, M.S., Bradbury, E.J. & McMahon, S.B. Nerve growth factor induces P2X3 expression in sensory neurons. J. Neurochem. 77, 864–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, L., Jones, L., Tuszynski, M.H. & Blesch, A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci. 26, 9713–9721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blesch, A. & Tuszynski, M.H. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J. Comp. Neurol. 467, 403–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Thoenen, H. & Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5 Suppl, 1046–1050 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kordower, J.H. et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol. 46, 419–424 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Baloh, R.H. et al. TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron 18, 793–802 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Baloh, R.H. et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-RET receptor complex. Neuron 21, 1291–1302 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Funakoshi, H. et al. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J. Cell Biol. 123, 455–465 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Hammarberg, H. et al. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7, 857–860 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, E.M., Jr, Taniuchi, M. & DiStefano, P.S. Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci. 11, 299–304 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Sanicola, M. et al. Glial cell line-derived neurotrophic factor–dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc. Natl. Acad. Sci. USA 94, 6238–6243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Treanor, J.J. et al. Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Gardell, L.R. et al. Multiple actions of systemic artemin in experimental neuropathy. Nat. Med. 9, 1383–1389 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Averill, S., McMahon, S.B., Clary, D.O., Reichardt, L.F. & Priestley, J.V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484–1494 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bennett, D.L. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 18, 3059–3072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bradbury, E.J., Burnstock, G. & McMahon, S.B. The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol. Cell Neurosci. 12, 256–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Robertson, B. & Grant, G. A comparison between wheat germ agglutinin- and choleragenoid-horseradish peroxidase as anterogradely transported markers in central branches of primary sensory neurons in the rat with some observations in the cat. Neuroscience 14, 895–905 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Malin, S.A. et al. Glial cell line–derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J. Neurosci. 26, 8588–8599 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harris, J.A. Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Hunt, S.P., Pini, A. & Evan, G. Induction of c-fos–like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Presley, R.W., Menetrey, D., Levine, J.D. & Basbaum, A.I. Systemic morphine suppresses noxious stimulus-evoked Fos protein–like immunoreactivity in the rat spinal cord. J. Neurosci. 10, 323–335 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Honor, P. et al. Spinal substance P receptor expression and internalization in acute, short-term, and long-term inflammatory pain states. J. Neurosci. 19, 7670–7678 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Sah, D.W., Ossipov, M.H. & Porreca, F. Neurotrophic factors as novel therapeutics for neuropathic pain. Nat. Rev. Drug Discov. 2, 460–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sah, D.W., Ossipov, M.H., Rossomando, A., Silvian, L. & Porreca, F. New approaches for the treatment of pain: the GDNF family of neurotrophic growth factors. Curr. Top. Med. Chem. 5, 577–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Baloh, R.H., Enomoto, H., Johnson, E.M. Jr & Milbrandt, J. The GDNF family ligands and receptors—implications for neural development. Curr. Opin. Neurobiol. 10, 103–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Yan, H., Newgreen, D.F. & Young, H.M. Developmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin and artemin. Dev. Dyn. 227, 395–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Baloh, R.H. et al. GFRα3 is an orphan member of the GDNF/neurturin/persephin receptor family. Proc. Natl. Acad. Sci. USA 95, 5801–5806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oblinger, M.M. & Lasek, R.J. A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons. J. Neurosci. 4, 1736–1744 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wujek, J.R. & Lasek, R.J. Correlation of axonal regeneration and slow component B in two branches of a single axon. J. Neurosci. 3, 243–251 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bennett, D.L. et al. The glial cell line–derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. J. Neurosci. 20, 427–437 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Orozco, O.E., Walus, L., Sah, D.W., Pepinsky, R.B. & Sanicola, M. GFRα3 is expressed predominantly in nociceptive sensory neurons. Eur. J. Neurosci. 13, 2177–2182 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Neumann, S. & Woolf, C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Plunet, W., Kwon, B.K. & Tetzlaff, W. Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J. Neurosci. Res. 68, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, R. et al. Glial cell line–derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain. Neuroscience 121, 815–824 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Abbadie, C., Lombard, M.C., Morain, F. & Besson, J.M. Fos-like immunoreactivity in the rat superficial dorsal horn induced by formalin injection in the forepaw: effects of dorsal rhizotomies. Brain Res. 578, 17–25 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Biogen Idec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Porreca.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 14240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., King, T., Ossipov, M. et al. Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury. Nat Neurosci 11, 488–496 (2008). https://doi.org/10.1038/nn2069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing